
Guide to MySQL 5.1 Partitioning

Guide to MySQL 5.1 Partitioning
Abstract

This Guide covers MySQL's partitioning implementation as of MySQL 5.1.12-beta. It includes informa-
tion on the following topics:

• Partitioning types supported by MySQL 5.1

• Creating and altering partitioned tables

• Managing partitions and partitioned tables

• Items to take under consideration when designing partitioned tables and writing applications that use
them.

• Current restrictions and limitations on MySQL partitioning

This Guide is not intended to serve as a complete reference to the MySQL Server or client programs, nor
to writing applications that use MySQL. For information about these and related subjects, you should
refer to the MySQL 5.1 Manual.

The information in this Guide — generated on 2006-10-26 (revision: 3752) — was current for MySQL
5.1.12-beta. For the latest information, you should check the MySQL documentation available on the
MySQL Web site, at http://dev.mysql.com/doc/.

Copyright ©1997-2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may
create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the
actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any me-
dia, except if you distribute the documentation in a manner similar to how MySQL disseminates it (that is, electronically for down-
load on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is dissemin-
ated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this doc-
umentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

Please email <docs@mysql.com> for more information.

http://dev.mysql.com/doc/

Table of Contents
1. Partitioning ... 1
2. Overview of Partitioning in MySQL .. 3
3. Partition Types .. 6

3.1. RANGE Partitioning ... 7
3.2. LIST Partitioning ... 10
3.3. HASH Partitioning ... 12

3.3.1. LINEAR HASH Partitioning ... 14
3.4. KEY Partitioning ... 15
3.5. Subpartitioning ... 16
3.6. How MySQL Partitioning Handles NULL Values .. 19

4. Partition Management ... 24
4.1. Management of RANGE and LIST Partitions .. 24
4.2. Management of HASH and KEY Partitions .. 30
4.3. Maintenance of Partitions ... 31
4.4. Obtaining Information About Partitions ... 32

5. Partition Pruning ... 35
6. Restrictions and Limitations on Partitioning .. 38
7. SQL Statements for Creating and Altering Partitioned Tables ... 42

7.1. Partitioning Extensions to CREATE TABLE .. 42
7.1.1. Using the partition_options Clause .. 43
7.1.2. Using partition_definition Clauses ... 45

7.2. Partitioning Extnesions to the ALTER TABLE Statement 47
8. The INFORMATION_SCHEMA PARTITIONS Table .. 50
Index .. 53

iv

Chapter 1. Partitioning
This document discusses user-defined partitioning, as implemented in MySQL 5.1.

An overview of MySQL partitioning and partitioning concepts may be found in Chapter 2, Overview of
Partitioning in MySQL.

MySQL supports several types of partitioning, which are discussed in Chapter 3, Partition Types, as
well as subpartitioning, which is described in Section 3.5, “Subpartitioning”.

Methods of adding, removing, and altering partitions in existing partitioned tables are covered in
Chapter 4, Partition Management.

Syntax information for partitioning extensions to the CREATE TABLE and ALTER TABLE statements
can be found in Section 7.1, “Partitioning Extensions to CREATE TABLE”, and Section 7.2,
“Partitioning Extnesions to the ALTER TABLE Statement”.

Table maintenance commands for use with partitioned tables are discussed in Section 4.3, “Maintenance
of Partitions”.

The INFORMATION_SCHEMA.PARTITIONS table, which contains informatin about table partitions,
is described in Chapter 8, The INFORMATION_SCHEMA PARTITIONS Table.

Important: Partitioned tables created with MySQL versions prior to 5.1.6 cannot be read by a 5.1.6 or
later MySQL Server. In addition, the INFORMATION_SCHEMA.TABLES table cannot be used if such
tables are present on a 5.1.6 server. Beginning with MySQL 5.1.7, a suitable warning message is gener-
ated instead, to alert the user that incompatible partitioned tables have been found by the server.

Important: If you are using partitioned tables which were created in MySQL 5.1.5 or earlier, be sure to
see Changes in release 5.1.6 (01 February 2006)
[http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html] for more information and suggested work-
arounds before upgrading to MySQL 5.1.6 or later.

The partitioning implementation in MySQL 5.1 is still undergoing development. For known issues with
MySQL partitioning, see Chapter 6, Restrictions and Limitations on Partitioning, where we have noted
these.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources:

• MySQL Partitioning Forum [http://forums.mysql.com/list.php?106]

This is the official discussion forum for those interested in or experimenting with MySQL Partition-
ing technology. It features announcements and updates from MySQL developers and others. It is
monitored by members of the Partitioning Development and Documentation Teams.

• Mikael Ronström's Blog [http://mikaelronstrom.blogspot.com/]

MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here
concerning his work with MySQL Partitioning and MySQL Cluster.

• PlanetMySQL [http://www.planetmysql.org/]

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using my
MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

1

http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html
http://forums.mysql.com/list.php?106
http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/

MySQL 5.1 binaries are now available from http://dev.mysql.com/downloads/mysql/5.1.html. However,
for the latest partitioning bugfixes and feature additions, you can obtain the source from our BitKeeper
repository. To enable partitioning, you need to compile the server using the --with-partition op-
tion. For more information about building MySQL, see MySQL Installation Using a Source Distribution
[http://dev.mysql.com/doc/refman/5.1/en/installing-source.html]. If you have problems compiling a par-
titioning-enabled MySQL 5.1 build, check the MySQL Partitioning Forum
[http://forums.mysql.com/list.php?106] and ask for assistance there if you don't find a solution to your
problem already posted.

Partitioning

2

http://dev.mysql.com/downloads/mysql/5.1.html
http://dev.mysql.com/doc/refman/5.1/en/installing-source.html
http://forums.mysql.com/list.php?106

Chapter 2. Overview of Partitioning in MySQL
This section provides a conceptual overview of partitioning in MySQL 5.1.

For information on partitioning restrictions and feature limitations, see Chapter 6, Restrictions and Lim-
itations on Partitioning.

The SQL standard does not provide much in the way of guidance regarding the physical aspects of data
storage. The SQL language itself is intended to work independently of any data structures or media un-
derlying the schemas, tables, rows, or columns with which it works. Nonetheless, most advanced data-
base management systems have evolved some means of determining the physical location to be used for
storing specific pieces of data in terms of the filesystem, hardware or even both. In MySQL, the In-
noDB storage engine has long supported the notion of a tablespace, and the MySQL Server, even prior
to the introduction of partitioning, could be configured to employ different physical directories for stor-
ing different databases (see Using Symbolic Links
[http://dev.mysql.com/doc/refman/5.1/en/symbolic-links.html], for an explanation of how this is done).

Partitioning takes this notion a step further, by allowing you to distribute portions of individual tables
across a filesystem according to rules which you can set largely as needed. In effect, different portions
of a table are stored as separate tables in different locations. The user-selected rule by which the division
of data is accomplished is known as a partitioning function, which in MySQL can be the modulus,
simple matching against a set of ranges or value lists, an internal hashing function, or a linear hashing
function. The function is selected according to the partitioning type specified by the user, and takes as its
parameter the value of a user-supplied expression. This expression can be either an integer column
value, or a function acting on one or more column values and returning an integer. The value of this ex-
pression is passed to the partitioning function, which returns an integer value representing the number of
the partition in which that particular record should be stored. This function must be non-constant and
non-random. It may not contain any queries, but may use virtually any SQL expression that is valid in
MySQL, so long as that expression returns a positive integer less than MAXVALUE (the greatest possible
positive integer). Examples of partitioning functions can be found in the discussions of partitioning
types later in this chapter (see Chapter 3, Partition Types), as well as in the partitioning syntax descrip-
tions given in Section 7.1, “Partitioning Extensions to CREATE TABLE”.

This is known as horizontal partitioning — that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.1 does not support vertical partitioning, in which different columns of a
table are assigned to different physical partitions. There are not at this time any plans to introduce vertic-
al partitioning into MySQL 5.1.

Partitioning support is included in the -max releases of MySQL 5.1 (that is, the 5.1 -max binaries will
be built with --with-partition). If the MySQL binary is built with partitioning support, nothing
further needs to be done in order to enable it (for example, no special entries are required in your
my.cnf file). You can determine whether your MySQL server supports partitioning by means of a
SHOW VARIABLES command such as this one:

mysql> SHOW VARIABLES LIKE '%partition%';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| have_partitioning | YES |
+-------------------+-------+
1 row in set (0.00 sec)

If you do not see the have_partitioning variable with the value YES listed as shown above in the
output of an appropriate SHOW VARIABLES, then your version of MySQL does not support partition-
ing.

Prior to MySQL 5.1.6, this variable was named have_partition_engine. (Bug#16718
[http://bugs.mysql.com/16718])

3

http://dev.mysql.com/doc/refman/5.1/en/symbolic-links.html
http://bugs.mysql.com/16718

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these. In
MySQL 5.1, all partitions of the same partitioned table must use the same storage engine; for ex-
ample, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing
preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

Note: MySQL partitioning cannot be used with the MERGE or CSV storage engines. Prior to MySQL
5.1.6, it was also not feasible to create a partitioned table using the BLACKHOLE storage engine.
(Bug#14524 [http://bugs.mysql.com/14524]). Partitioning by KEY is supported for use with the NDB-
Cluster storage engine, but other types of user-defined partitioning are not supported for Cluster
tables in MySQL 5.1.

To employ a particular storage engine for a partitioned table, it is necessary only to use the [STORAGE]
ENGINE option just as you would for a non-partitioned table. However, you should keep in mind that
[STORAGE] ENGINE (and other table options) need to be listed before any partitioning options are
used in a CREATE TABLE statement. This example shows how to create a table that is partitioned by
hash into 6 partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
ENGINE=INNODB
PARTITION BY HASH(MONTH(tr_date))
PARTITIONS 6;

(Note that each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.1
this has no effect.)

Note: Partitioning applies to all data and indexes of a table; you cannot partition only the data and not
the indexes, or vice versa, nor can you partition only a portion of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DIRECT-
ORY and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE statement
used to create the partitioned table. In addition, MAX_ROWS and MIN_ROWS can be used to determine
the maximum and minimum numbers of rows, respectively, that can be stored in each partition. See
Chapter 4, Partition Management, for more information on these options.

Some of the advantages of partitioning include:

• Being able to store more data in one table than can be held on a single disk or filesystem partition.

• Data that loses its usefulness can often be easily be removed from the table by dropping the partition
containing only that data. Conversely, the process of adding new data can in some cases be greatly
facilitated by adding a new partition specifically for that data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause
can be stored only on one or more partitions, thereby excluding any remaining partitions from the
search. Because partitions can be altered after a partitioned table has been created, you can reorgan-
ize your data to enhance frequent queries that may not have been so when the partitioning scheme
was first set up. This capability, sometimes referred to as partition pruning, was implemented in
MySQL 5.1.6. For additional information, see Chapter 5, Partition Pruning.

Other benefits usually associated with partitioning include those in the following list. These features are
not currently implemented in MySQL Partitioning, but are high on our list of priorities.

• Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized. A
simple example of such a query might be SELECT salesperson_id, COUNT(orders) as

Overview of Partitioning in MySQL

4

http://bugs.mysql.com/14524

order_total FROM sales GROUP BY salesperson_id;. By “parallelized,” we mean
that the query can be run simultaneously on each partition, and the final result obtained merely by
summing the results obtained for all partitions.

• Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as Partitioning development continues.

Overview of Partitioning in MySQL

5

Chapter 3. Partition Types
This section discusses the types of partitioning which are available in MySQL 5.1. These include:

• RANGE partitioning: Assigns rows to partitions based on column values falling within a given
range. See Section 3.1, “RANGE Partitioning”.

• LIST partitioning: Similar to partitioning by range, except that the partition is selected based on
columns matching one of a set of discrete values. See Section 3.2, “LIST Partitioning”.

• HASH partitioning: A partition is selected based on the value returned by a user-defined expression
that operates on column values in rows to be inserted into the table. The function may consist of any
expression valid in MySQL that yields a non-negative integer value. See Section 3.3, “HASH Parti-
tioning”.

• KEY partitioning: Similar to partitioning by hash, except that only one or more columns to be evalu-
ated are supplied, and the MySQL server provides its own hashing function. These columns can con-
tain other than integer values, since the hashing function supplied by MySQL guarantees an integer
result regardless of the column data type. See Section 3.4, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems support
explicit date partitioning, which MySQL does not implement in 5.1. However, it is not difficult in
MySQL to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on ex-
pressions making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL

)
PARTITION BY KEY(joined)
PARTITIONS 6;

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you
can simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a
value, as shown here:

CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL

)
PARTITION BY RANGE(YEAR(joined)) (

PARTITION p0 VALUES LESS THAN (1960),
PARTITION p1 VALUES LESS THAN (1970),
PARTITION p2 VALUES LESS THAN (1980),
PARTITION p3 VALUES LESS THAN (1990),
PARTITION p4 VALUES LESS THAN MAXVALUE

);

Additional examples of partitioning using dates may be found here:

6

• Section 3.1, “RANGE Partitioning”

• Section 3.3, “HASH Partitioning”

• Section 3.3.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see:

• Chapter 5, Partition Pruning

• Section 3.5, “Subpartitioning”

MySQL partitioning is optimised for use with the TO_DAYS() and YEAR() functions. However, you
can use other date and time functions that return an integer or NULL, such as WEEKDAY(), DAY-
OFYEAR(), or MONTH(). See Date and Time Functions
[http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html], for more information about
such functions.

It is important to remember — regardless of the type of partitioning that you use — that partitions are al-
ways numbered automatically and in sequence when created, starting with 0. When a new row is inser-
ted into a partitioned table, it is these partition numbers that are used in identifying the correct partition.
For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For the RANGE
and LIST partitioning types, it is necessary to ensure that there is a partition defined for each partition
number. For HASH partitioning, the user function employed must return an integer value greater than 0.
For KEY partitioning, this issue is taken care of automatically by the hashing function which the MySQL
server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for
tables and databases. However, you should note that partition names are not case-sensitive. For example,
the following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
-> PARTITION BY LIST(val)(
-> PARTITION mypart VALUES IN (1,3,5),
-> PARTITION MyPart VALUES IN (2,4,6)
->);

ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, non-zero
integer literal with no leading zeroes, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates as an integer. (Beginning with MySQL 5.1.12, decimal fractions are no longer truncated, but
instead are disallowed entirely.)

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be
used for creating each partition type; this information may be found in Section 7.1, “Partitioning Exten-
sions to CREATE TABLE”.

3.1. RANGE Partitioning
A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but not
overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

Partition Types

7

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

);

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding
a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

)
PARTITION BY RANGE (store_id) (

PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN (21)

);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are
stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and so on.
Note that each partition is defined in order, from lowest to highest. This is a requirement of the PARTI-
TION BY RANGE syntax; you can think of it as being analogous to a switch ... case in C or
Java in this regard.

It is easy to determine that a new row containing the data (72, 'Michael', 'Widenius',
'1998-06-25', NULL, 13) is inserted into partition p2, but what happens when your chain adds
a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater than 20,
so an error results because the server does not know where to place it. You can keep this from occurring
by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that provides for
all values greater than highest value explicitly named:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

)
PARTITION BY RANGE (store_id) (

PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN MAXVALUE

);

MAXVALUE represents the greatest possible integer value. Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future — when the number of stores has increased to 25, 30, or more — you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Chapter 4, Partition
Management, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes — that is, based on
ranges of job_code column values. For example — assuming that two-digit job codes are used for

Partition Types

8

regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit
codes are used for management positions — you could create the partitioned table using the following:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

)
PARTITION BY RANGE (job_code) (

PARTITION p0 VALUES LESS THAN (100),
PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (10000)

);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to of-
fice and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be
able to evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on
one of the two DATE columns instead. For example, let us suppose that you wish to partition based on
the year that each employee left the company; that is, the value of YEAR(separated). An example of
a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY RANGE (YEAR(separated)) (

PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1996),
PARTITION p2 VALUES LESS THAN (2001),
PARTITION p3 VALUES LESS THAN MAXVALUE

);

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those
who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in
p2; and for any workers who left after the year 2000, in p3.

Range partitioning is particularly useful when:

• You want or need to delete “old” data. If you are using the partitioning scheme shown immediately
above, you can simply use ALTER TABLE employees DROP PARTITION p0; to delete all
rows relating to employees who stopped working for the firm prior to 1991. (See Section 7.2,
“Partitioning Extnesions to the ALTER TABLE Statement”, and Chapter 4, Partition Management,
for more information.) For a table with a great many rows, this can be much more efficient than run-
ning a DELETE query such as DELETE FROM employees WHERE YEAR(separated) <=
1990;.

• You want to use a column containing date or time values, or containing values arising from some
other series.

• You frequently run queries that depend directly on the column used for partitioning the table. For ex-
ample, when executing a query such as SELECT COUNT(*) FROM employees WHERE
YEAR(separated) = 2000 GROUP BY store_id;, MySQL can quickly determine that

Partition Types

9

only partition p2 needs to be scanned because the remaining partitions cannot contain any records
satisfying the WHERE clause. See Chapter 5, Partition Pruning, for more information about how this
is accomplished.

3.2. LIST Partitioning
List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE,
each partition must be explicitly defined. The chief difference is that, in list partitioning, each partition is
defined and selected based on the membership of a column value in one of a set of value lists, rather
than in one of a set of contiguous ranges of values. This is done by using PARTITION BY LIST(ex-
pr) where expr is a column value or an expression based on a column value and returning an integer
value, and then defining each partition by means of a VALUES IN (value_list), where
value_list is a comma-separated list of integers.

Note: In MySQL 5.1, it is possible to match against only a list of integers (and possibly NULL — see
Section 3.6, “How MySQL Partitioning Handles NULL Values”) when partitioning by LIST.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particu-
lar order. For more detailed syntactical information, see Section 7.1, “Partitioning Extensions to CRE-
ATE TABLE”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the CREATE TABLE statement shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

);

(This is the same table used as a basis for the examples in Section 3.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table:

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY LIST(store_id) (

PARTITION pNorth VALUES IN (3,5,6,9,17),
PARTITION pEast VALUES IN (1,2,10,11,19,20),

Partition Types

10

PARTITION pWest VALUES IN (4,12,13,14,18),
PARTITION pCentral VALUES IN (7,8,15,16)

);

This makes it easy to add or drop employee records relating to specific regions to or from the table. For
instance, suppose that all stores in the West region are sold to another company. All rows relating to em-
ployees working at stores in that region can be deleted with the query ALTER TABLE employees
DROP PARTITION pWest;, which can be executed much more efficiently than the equivalent DE-
LETE statement DELETE FROM employees WHERE store_id IN (4,12,13,14,18);.

As with RANGE and HASH partitioning, if you wish to partition a table by a column whose value is not
an integer or NULL, you must employ a partitioning expression based on that column which returns such
a value. For example, suppose that the table containing employee data is defined as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code CHAR(1),
store_id INT

);

In this version of the employees table, the job code is a letter rather than a number. Each letter corres-
ponds to a specific job, and we wish to partition the table in such a way that records for employees hav-
ing similar jobs or working in the same department are grouped into the same partition, according to the
following scheme:

Job Category or Department Job Codes

Management D, M, O, P

Sales B, L, S

Technical A, E, G, I, T

Clerical K, N, Y

Support C, F, J, R, V

Unassigned “Empty”

Since we cannot use character values in value-lists, we need to convert these into integers or NULLs. For
this purpose, we can use the ASCII() function on the column value. In addition — due to the use of
different applications at different times and locations — these codes may be either uppercase or lower-
case, and the “empty” value representing “currently unassigned” may actually be a NULL, an empty
string, or a space character. A partitioned table that implements this scheme is shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code CHAR(1),
store_id INT

)
PARTITION BY LIST(ASCII(UCASE(job_code))) (

PARTITION management VALUES IN(68, 77, 79, 80),
PARTITION sales VALUES IN(66, 76, 83),
PARTITION technical VALUES IN(65, 69, 71, 73, 84),
PARTITION clerical VALUES IN(75, 78, 89),
PARTITION support VALUES IN(67, 70, 74, 82, 86),
PARTITION unassigned VALUES IN(NULL, 0, 32)

);

Partition Types

11

Since expressions are not permitted in partition value lists, you must list the ASCII codes for the letters
that are to be matched. Note that ASCII(NULL) returns NULL.

Important: If you try to insert a row such that the column value (or the partitioning expression's return
value) is not found in any of the partitioning value lists, the INSERT query will fail with an error. For
example, given the LIST partitioning scheme just outlined, this query will fail:

INSERT INTO employees VALUES
(224, 'Linus', 'Torvalds', '2002-05-01', '2004-10-12', 'Q', 21);

Failure occurs because 81 (the ASCII code for the uppercase letter 'Q' is not found in any of the value
lists used to define any of the partitions. There is no “catch-all” definition for list partitions analogous
to VALUES LESS THAN(MAXVALUE) which accommodates values not found in any of the value
lists. In other words, any value which is to be matched must be found in one of the value lists.

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or
key to produce a composite partitioning (subpartitioning). See Section 3.5, “Subpartitioning”.

3.3. HASH Partitioning
Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a
given column value or set of column values is to be stored; with hash partitioning, MySQL takes care of
this for you, and you need only specify a column value or expression based on a column value to be
hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement
a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This
can simply be the name of a column whose type is one of MySQL's integer types. In addition, you will
most likely want to follow this with a PARTITIONS num clause, where num is a non-negative integer
representing the number of partitions into which the table is to be divided.

For example, the following statement creates a table that uses hashing on the store_id column and is
divided into 4 partitions:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)

Partition Types

12

PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;

You may use any function or other expression for expr that is valid in MySQL, so long as it returns a
non-constant, non-random integer value. (In other words, it should be varying but deterministic.)
However, you should keep in mind that this expression is evaluated each time a row is inserted or up-
dated (or possibly deleted); this means that very complex expressions may give rise to performance is-
sues, particularly when performing operations (such as batch inserts) that affect a great many rows at
one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of par-
titions. That is, the more closely that the expression varies with the value of the column on which it is
based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression
TO_DAYS(date_col) is said to vary directly with the value of date_col, because for every
change in the value of date_col, the value of the expression changes in a consistent manner. The vari-
ance of the expression YEAR(date_col) with respect to date_col is not quite as direct as that of
TO_DAYS(date_col), because not every possible change in date_col produces an equivalent
change in YEAR(date_col). Even so, YEAR(date_col) is a good candidate for a hashing func-
tion, because it varies directly with a portion of date_col and there is no possible change in
date_col that produces a disproportionate change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now con-
sider the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing function
because a change in the value of int_col is not guaranteed to produce a proportional change in the
value of the expression. Changing the value of int_col by a given amount can produce by widely dif-
ferent changes in the value of the expression. For example, changing int_col from 5 to 6 produces a
change of -1 in the value of the expression, but changing the value of int_col from 6 to 7 produces a
change of -7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression fol-
lows a straight line as traced by the equation y=nx where n is some nonzero constant, the better the ex-
pression is suited to hashing. This has to do with the fact that the more nonlinear an expression is, the
more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but determin-
ing which of such expressions are suitable can be quite difficult and time-consuming. For this reason,
the use of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use
based on the modulus of the result of the user function. In other words, for an expression expr, the par-
tition in which the record is stored is partition number N, where N = MOD(expr, num). For ex-
ample, suppose table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY HASH(YEAR(col3))
PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is
stored is determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1

MySQL 5.1 also supports a variant of HASH partitioning known as linear hashing which employs a

Partition Types

13

more complex algorithm for determining the placement of new rows inserted into the partitioned table.
See Section 3.3.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

The user function is evaluated each time a record is inserted or updated. It may also — depending on the
circumstances — be evaluated when records are deleted.

Note: If the table to be partitioned has a UNIQUE key, then any columns supplied as arguments to the
HASH user function or to the KEY's column_list must be part of that key. Exception: This restric-
tion does not apply to tables using the NDBCluster storage engine.

3.3.1. LINEAR HASH Partitioning
MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of
the LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;

Given an expression expr, the partition in which the record is stored when linear hashing is used is par-
tition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(For example, suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEIL-
ING(3.7004397181411) is 4, and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = CEIL(V / 2)

• Set N = N & (V - 1)

For example, suppose that the table t1, using linear hash partitioning and having 6 partitions, is created
using this statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR HASH(YEAR(col3))
PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values
'2003-04-14' and '1998-10-19'. The partition number for the first of these is determined as fol-
lows:

Partition Types

14

V = POWER(2, CEILING(LOG(2,7))) = 8
N = YEAR('2003-04-14') & (8 - 1)

= 2003 & 7
= 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V = 8
N = YEAR('1998-10-19') & (8-1)

= 1998 & 7
= 6

(6 >= 6 is TRUE: additional step required)

N = 6 & CEILING(5 / 2)
= 6 & 3
= 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of parti-
tions is made much faster, which can be beneficial when dealing with tables containing extremely large
amounts (terabytes) of data. The disadvantage is that data is less likely to be evenly distributed between
partitions as compared with the distribution obtained using regular hash partitioning.

3.4. KEY Partitioning
Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a
user-defined expression, the hashing function for key partitioning is supplied by the MySQL server.
MySQL Cluster uses MD5() for this purpose; for tables using other storage engines, the server employs
its own internal hashing function which is based on the same algorithm as PASSWORD().

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a
table that is partitioned by hash. The major differences are that:

• KEY is used rather than HASH.

• KEY takes only a list of one or more column names. Beginning with MySQL 5.1.5, the column or
columns used as the partitioning key must comprise part or all of the table's primary key, if the table
has one.

Beginning with MySQL 5.1.6, KEY takes a list of zero or more column names. Where no column
name is specified as the partitioning key, the table's primary key is used, if there is one. For example,
the following CREATE TABLE statement is valid in MySQL 5.1.6 or later:

CREATE TABLE k1 (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20)

)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning
key:

CREATE TABLE k1 (
id INT NOT NULL,
name VARCHAR(20),
UNIQUE KEY (id)

)
PARTITION BY KEY()

Partition Types

15

PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement
would fail.

In both of these cases, the partitioning key is the id column, even though it is not shown in the out-
put of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the INFORMA-
TION_SCHEMA.PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted
to integer or NULL values. For example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (
s1 CHAR(32) PRIMARY KEY

)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (Note:
In this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Chapter 6, Restrictions and Limitations on Partition-
ing.

Note: Also beginning with MySQL 5.1.6, tables using the NDB Cluster storage engine are impli-
citly partitioned by KEY, again using the table's primary key as the partitioning key. In the event that
the Cluster table has no explicit primary key, the “hidden” primary key generated by the NDB storage
engine for each Cluster table is used as the partitioning key.

Important: For a key-partitioned table using any MySQL storage engine other than NDB
Cluster, you cannot execute an ALTER TABLE DROP PRIMARY KEY, as doing so generates
the error ERROR 1466 (HY000): Field in list of fields for partition function not found in table. This
is not an issue for MySQL Cluster tables which are partitioned by KEY; in such cases, the table is re-
organized using the “hidden” primary key as the table's new partitioning key. See MySQL Cluster
[http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html].

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
col1 INT NOT NULL,
col2 CHAR(5),
col3 DATE

)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the parti-
tion number being derived using a powers-of-two algorithm rather than modulo arithmetic. See Sec-
tion 3.3.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

3.5. Subpartitioning
Subpartitioning — also known as composite partitioning — is the further division of each partition in a
partitioned table. For example, consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))

Partition Types

16

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html

SUBPARTITION BY HASH(TO_DAYS(purchased))
SUBPARTITIONS 2 (

PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE

);

Table ts has 3 RANGE partitions. Each of these partitions — p0, p1, and p2 — is further divided into 2
subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the ac-
tion of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value
less than 1990 in the purchased column.

In MySQL 5.1, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions
may use either HASH or KEY partitioning. This is also known as composite partitioning.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown in
the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s2,
SUBPARTITION s3

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4,
SUBPARTITION s5

)
);

Some syntactical items of note:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned ta-
ble, you must define them all. In other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1

),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s2,
SUBPARTITION s3

)
);

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise,
you may set any desired option for the subpartition or allow it to assume its default setting for that
option.

• In MySQL 5.1.7 and earlier, names of subpartitions must be unique within each partition, but do not
have to be unique within the table as a whole. Beginning with MySQL 5.1.8, subpartition names

Partition Types

17

must be unique across the entire table. For example, the following CREATE TABLE statement is
valid in MySQL 5.1.8 and later:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s2,
SUBPARTITION s3

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4,
SUBPARTITION s5

)
);

(The previous statement is also valid for versions of MySQL prior to 5.1.8.)

Subpartitions can be used with especially large tables to distribute data and indexes across many disks.
Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider the
following example:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0

DATA DIRECTORY = '/disk0/data'
INDEX DIRECTORY = '/disk0/idx',

SUBPARTITION s1
DATA DIRECTORY = '/disk1/data'
INDEX DIRECTORY = '/disk1/idx'

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s2
DATA DIRECTORY = '/disk2/data'
INDEX DIRECTORY = '/disk2/idx',

SUBPARTITION s3
DATA DIRECTORY = '/disk3/data'
INDEX DIRECTORY = '/disk3/idx'

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4
DATA DIRECTORY = '/disk4/data'
INDEX DIRECTORY = '/disk4/idx',

SUBPARTITION s5
DATA DIRECTORY = '/disk5/data'
INDEX DIRECTORY = '/disk5/idx'

)
);

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other vari-
ations are possible; another example might be:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0a

DATA DIRECTORY = '/disk0'
INDEX DIRECTORY = '/disk1',

SUBPARTITION s0b
DATA DIRECTORY = '/disk2'
INDEX DIRECTORY = '/disk3'

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s1a
DATA DIRECTORY = '/disk4/data'

Partition Types

18

INDEX DIRECTORY = '/disk4/idx',
SUBPARTITION s1b

DATA DIRECTORY = '/disk5/data'
INDEX DIRECTORY = '/disk5/idx'

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s2a,
SUBPARTITION s2b

)
);

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4
ways, with a separate disk dedicated to the data and to the indexes for each of the two subpartitions
(s0a and s0b) making up partition p0. In other words:

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as
those from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks
as with the legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4 — the data in
/disk4/data, and the indexes in /disk4/idx.

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5 — the data
in /disk5/data, and the indexes in /disk5/idx.

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space
as required by either of the two previous ranges. Currently, it is sufficient to store all of these in the
default location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a
point where the default location no longer provides sufficient space, the corresponding rows can be
moved using an ALTER TABLE ... REORGANIZE PARTITION statement. See Chapter 4,
Partition Management, for an explanation of how this can be done.

3.6. How MySQL Partitioning Handles NULL Values
Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether
it is a column value or the value of a user-supplied expression. Even though it is permitted to use NULL
as the value of an expression that must otherwise yield an integer, it is important to keep in mind that
NULL is not a number. Beginning version 5.1.8, MySQL Partitioning treats NULL as being less than any
non-NULL value, just as ORDER BY does.

Because of this, this treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in this
section how each MySQL partitioning types handles NULL values when determining the partition in
which a row should be stored, and provide examples for each.

If you insert a row into a table partitioned by RANGE such that the column value used to determine the

Partition Types

19

partition is NULL, the row is inserted into the lowest partition. For example, consider these two tables,
created and populated as follows:

mysql> CREATE TABLE t1 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (0),
-> PARTITION p1 VALUES LESS THAN (10),
-> PARTITION p2 VALUES LESS THAN MAXVALUE
->);

Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t1 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (-5),
-> PARTITION p1 VALUES LESS THAN (0),
-> PARTITION p1 VALUES LESS THAN (10),
-> PARTITION p2 VALUES LESS THAN MAXVALUE
->);

Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions the rows are stored in by inspecting the filesystem and comparing the sizes
of the .MYD files correpsonding to the partitions:

/var/lib/mysql/test> ls -l *.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 03:27 t1#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t1#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t1#P#p2.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 03:27 t2#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t2#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t2#P#p2.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t2#P#p3.MYD

(Partition files are named according to the format table_name#P#partition_name.exten-
sion, so that t1#P#p0.MYD is the file in which data belonging to partition p0 of table t1 is stored.
Note: Prior to MySQL 5.1.5, these files would have been named t1_p0.MYD and t2_p0.MYD, re-
spectively. See Changes in release 5.1.6 (01 February 2006)
[http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html] and Bug#13437
[http://bugs.mysql.com/13437] for information regarding how this change impacts upgrades.)

You can also demonstrate that these rows were stored in the lowest partition of the each table by drop-
ping these partitions, and then re-running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

Partition Types

20

http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html
http://bugs.mysql.com/13437

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 7.2, “Partitioning
Extnesions to the ALTER TABLE Statement”.)

Such treatment also holds true for partitioning expressions that use SQL functions. Suppose that we have
a table such as this one:

CREATE TABLE tndate (
id INT,
dt DATE

)
PARTITION BY RANGE(YEAR(dt)) (

PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE

);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL
is treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

A table that is partitioned by LIST admits NULL values if and only if one of its partitions is defined us-
ing that value-list that contains NULL. The converse of this is that a table partitioned by LIST which
does not explicitly use NULL in a value list rejects rows resulting in a NULL value for the partitioning
expression, as shown in this example:

mysql> CREATE TABLE ts1 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7),
-> PARTITION p2 VALUES IN (2, 5, 8)
->);

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside
this range, just like the number 9. We can create tables ts2 and ts3 having value lists containing
NULL, as shown here:

mysql> CREATE TABLE ts2 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7),
-> PARTITION p2 VALUES IN (2, 5, 8),
-> PARTITION p3 VALUES IN (NULL)
->);

Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
-> c1 INT,
-> c2 VARCHAR(20)
->)

Partition Types

21

-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7, NULL),
-> PARTITION p2 VALUES IN (2, 5, 8)
->);

Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can treat NULL just as you would any other value, and so
VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are both valid (as are VALUES IN
(1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on). You can insert a row having
NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By inspecting the filesystem, you can verify that the first of these statements inserted a new row into
partition p3 of table ts2, and that the second statement inserted a new row into partition p1 of table
ts3:

/var/lib/mysql/test> ls -l ts2*.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:35 ts2#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:35 ts2#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:35 ts2#P#p2.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 10:35 ts2#P#p3.MYD

/var/lib/mysql/test> ls -l ts3*.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:36 ts3#P#p0.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 10:36 ts3#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:36 ts3#P#p2.MYD

As in earlier examples, we assume the use of the bash shell on a Unix operating system for listing files;
use whatever your platform provides in this regard. For example, if you are using a DOS shell on a Win-
dows operating system, the equivalent for the last listing might be obtained by running the command
dir ts3*.MYD in the directory C:\Program Files\MySQL\MySQL Server
5.1\data\test.

As shown earlier in this section, you can also verify which partitions were used for storing the values by
deleting them and then performing a SELECT.

NULL is handled somewhat differently for tables partitioned by HASH or KEY. In these cases, any parti-
tion expression that yields a NULL value is treated as though its return value were zero. We can verify
this behavior by examining the effects on the filesystem of creating a table partitioned by HASH and
populating it with a record containing appropriate values. Suppose that you have a table th, created in
the test database, using this statement:

mysql> CREATE TABLE th (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY HASH(c1)
-> PARTITIONS 2;

Query OK, 0 rows affected (0.00 sec)

Assuming an RPM installation of MySQL on Linux, this statement creates two .MYD files in /
var/lib/mysql/test, which can be viewed in the bash shell as follows:

/var/lib/mysql/test> ls th*.MYD -l
-rw-rw---- 1 mysql mysql 0 2005-11-04 18:41 th#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2005-11-04 18:41 th#P#p1.MYD

Note that the size of each file is 0 bytes. Now insert a row into th whose c1 column value is NULL, and

Partition Types

22

verify that this row was inserted:

mysql> INSERT INTO th VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
1 row in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Returning to the system
shell (still assuming bash for this purpose), we can see that the value was inserted into the first partition
(named p0 by default) by listing the data files once again:

var/lib/mysql/test> ls *.MYD -l
-rw-rw---- 1 mysql mysql 20 2005-11-04 18:44 th#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2005-11-04 18:41 th#P#p1.MYD

You can see that the INSERT statement modified only the file th#P#p0.MYD (increasing its size on
disk), without affecting the other data file.

Important: Prior to MySQL 5.1.8, RANGE partitioning treated a partitioning expression value of NULL
as a zero with respect to determining placement (the only way to circumvent this was to design tables so
as not to allow nulls, usually by declaring columns NOT NULL). If you have a RANGE partitioning
scheme that depends on this earlier behavior, you will need to re-implement it when upgrading to
MySQL 5.1.8 or later.

Partition Types

23

Chapter 4. Partition Management
MySQL 5.1 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine,
merge, or split existing partitions. All of these actions can be carried out using the partitioning exten-
sions to the ALTER TABLE command (see Section 7.2, “Partitioning Extnesions to the ALTER TABLE
Statement”, for syntax definitions). There are also ways to obtain information about partitioned tables
and partitions. We discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see Sec-
tion 4.1, “Management of RANGE and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 4.2, “Management of HASH and
KEY Partitions”.

• See Section 4.4, “Obtaining Information About Partitions”, for a discussion of mechanisms provided
in MySQL 5.1 for obtaining information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 4.3, “Maintenance
of Partitions”.

Note: In MySQL 5.1, all partitions of a partitioned table must have the same number of subpartitions,
and it is not possible to change the subpartitioning once the table has been created.

The statement ALTER TABLE ... PARTITION BY ... is available and is functional beginning
with MySQL 5.1.6; previously in MySQL 5.1, this was accepted as valid syntax, but the statement did
nothing.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE command with a
partition_options clause. This clause has the same syntax as that as used with CREATE TABLE
for creating a partitioned table, and always begins with the keywords PARTITION BY. For example,
suppose that you have a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
PARTITION BY RANGE(YEAR(purchased)) (

PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (2000),
PARTITION p3 VALUES LESS THAN (2005)

);

To repartition this table so that it is partitioned by key into two partitions using the id column value as
the basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using CRE-
ATE TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

Important: In MySQL 5.1.7 and earlier MySQL 5.1 releases, ALTER TABLE ... ENGINE = ...
removed all partitioning from the affected table. Beginning with MySQL 5.1.8, this statement changes
only the storage engine used by the table, and leaves the table's partitioning scheme intact. As of
MySQL 5.1.8, use ALTER TABLE ... REMOVE PARTITIONING to remove a table's partitioning.
See Section 7.2, “Partitioning Extnesions to the ALTER TABLE Statement”.

4.1. Management of RANGE and LIST Partitions

24

Range and list partitions are very similar with regard to how the adding and dropping of partitions are
handled. For this reason we discuss the management of both sorts of partitioning in this section. For in-
formation about working with tables that are partitioned by hash or key, see Section 4.2, “Management
of HASH and KEY Partitions”. Dropping a RANGE or LIST partition is more straightforward than adding
one, so we discuss this first.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished
using the ALTER TABLE statement with a DROP PARTITION clause. Here is a very basic example,
which supposes that you have already created a table which is partitioned by range and then populated
with 10 records using the following CREATE TABLE and INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
-> PARTITION BY RANGE(YEAR(purchased)) (
-> PARTITION p0 VALUES LESS THAN (1990),
-> PARTITION p1 VALUES LESS THAN (1995),
-> PARTITION p2 VALUES LESS THAN (2000),
-> PARTITION p3 VALUES LESS THAN (2005)
->);

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO tr VALUES
-> (1, 'desk organiser', '2003-10-15'),
-> (2, 'CD player', '1993-11-05'),
-> (3, 'TV set', '1996-03-10'),
-> (4, 'bookcase', '1982-01-10'),
-> (5, 'exercise bike', '2004-05-09'),
-> (6, 'sofa', '1987-06-05'),
-> (7, 'popcorn maker', '2001-11-22'),
-> (8, 'aquarium', '1992-08-04'),
-> (9, 'study desk', '1984-09-16'),
-> (10, 'lava lamp', '1998-12-25');

Query OK, 10 rows affected (0.01 sec)

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
-> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';

+------+-----------+------------+
| id | name | purchased |
+------+-----------+------------+
| 3 | TV set | 1996-03-10 |
| 10 | lava lamp | 1998-12-25 |
+------+-----------+------------+
2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

Note: In MySQL 5.1, the NDB Cluster storage engine does not support ALTER TABLE ...
DROP PARTITION. It does, however, support the other partitioning-related extensions to ALTER TA-
BLE that are described in this chapter.

It is very important to remember that, when you drop a partition, you also delete all the data that was
stored in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '1999-12-31';

Empty set (0.00 sec)

Because of this, the requirement was added in MySQL 5.1.10 that you have the DROP privilege for a ta-
ble before you can execute ALTER TABLE ... DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning

Partition Management

25

scheme, use the TRUNCATE TABLE command. (See TRUNCATE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/truncate.html].)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ... RE-
ORGANIZE PARTITION instead. See below or in Section 7.2, “Partitioning Extnesions to the ALTER
TABLE Statement”, for information about REORGANIZE PARTITION.

If you now execute a SHOW CREATE TABLE command, you can see how the partitioning makeup of
the table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************

Table: tr
Create Table: CREATE TABLE `tr` (

`id` int(11) default NULL,
`name` varchar(50) default NULL,
`purchased` date default NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM

)
1 row in set (0.01 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows will be stored in partition p3. You can
verify this as follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '2004-12-31';

+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
11	pencil holder	1995-07-12
1	desk organiser	2003-10-15
5	exercise bike	2004-05-09
7	popcorn maker	2001-11-22
+------+----------------+------------+
4 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '2004-12-31';

Empty set (0.00 sec)

Note that the number of rows dropped from the table as a result of ALTER TABLE ... DROP PAR-
TITION is not reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as
used for dropping RANGE partitions. However, there is one important difference in the effect this has on
your use of the table afterward: You can no longer insert into the table any rows having any of the val-
ues that were included in the value list defining the deleted partition. (See Section 3.2, “LIST Partition-
ing”, for an example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ...
ADD PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new
range to the end of the list of existing partitions. For example, suppose that you have a partitioned table
containing membership data for your organisation, which is defined as follows:

CREATE TABLE members (
id INT,
fname VARCHAR(25),

Partition Management

26

http://dev.mysql.com/doc/refman/5.1/en/truncate.html

lname VARCHAR(25),
dob DATE

)
PARTITION BY RANGE(YEAR(dob)) (

PARTITION p0 VALUES LESS THAN (1970),
PARTITION p1 VALUES LESS THAN (1980),
PARTITION p2 VALUES LESS THAN (1990)

);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of 2005,
you realize that you will soon be admitting members who were born in 1990 (and later in years to
come). You can modify the members table to accommodate new members born in the years 1990-1999
as shown here:

ALTER TABLE ADD PARTITION (PARTITION p3 VALUES LESS THAN (2000));

Important: With tables that are partitioned by range, you can use ADD PARTITION to add new parti-
tions to the high end of the partitions list only. Trying to add a new partition in this manner between or
before existing partitions will result in an error as shown here:

mysql> ALTER TABLE members
> ADD PARTITION (
> PARTITION p3 VALUES LESS THAN (1960));

ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
increasing for each partition

In a similar fashion, you can add new partitions to a table that is partitioned by LIST. For example, giv-
en a table defined like so:

CREATE TABLE tt (
id INT,
data INT

)
PARTITION BY LIST(data) (

PARTITION p0 VALUES IN (5, 10, 15),
PARTITION p1 VALUES IN (6, 12, 18)

);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Note that you cannot add a new LIST partition encompassing any values that are already included in
the value list of an existing partition. If you attempt to do so, an error will result:

mysql> ALTER TABLE tt ADD PARTITION
> (PARTITION np VALUES IN (4, 8, 12));

ERROR 1465 (HY000): Multiple definition of same constant »
in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you can-
not create a new partition on table tt that includes 12 in its value list. To accomplish this, you could
drop p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this
would result in the loss of all data stored in p1 — and it is often the case that this is not what you really
want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy the data into it using CREATE TABLE ... SELECT ..., then drop the old table and
rename the new one, but this could be very time-consuming when dealing with a large amounts of data.
This also might not be feasible in situations where high availability is a requirement.

Beginning with MySQL 5.1.6, you can add multiple partitions in a single ALTER TABLE ... ADD
PARTITION statement as shown here:

Partition Management

27

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
hired DATE NOT NULL

)
PARTITION BY RANGE(YEAR(hired)) (

PARTITION p1 VALUES LESS THAN (1991),
PARTITION p2 VALUES LESS THAN (1996),
PARTITION p3 VALUES LESS THAN (2001),
PARTITION p4 VALUES LESS THAN (2005)

);

ALTER TABLE employees ADD PARTITION (
PARTITION p5 VALUES LESS THAN (2010),
PARTITION p6 VALUES LESS THAN MAXVALUE

);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing
data. Let us look first at a couple of simple examples involving RANGE partitioning. Recall the mem-
bers table which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************

Table: members
Create Table: CREATE TABLE `members` (

`id` int(11) default NULL,
`fname` varchar(25) default NULL,
`lname` varchar(25) default NULL,
`dob` date default NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(dob)) (

PARTITION p0 VALUES LESS THAN (1970) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1980) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (1990) ENGINE = MyISAM.
PARTITION p3 VALUES LESS THAN (2000) ENGINE = MyISAM

)

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTI-
TION. However, you can use another partition-related extension to ALTER TABLE in order to accom-
plish this:

ALTER TABLE members REORGANIZE PARTITION p0 INTO (
PARTITION s0 VALUES LESS THAN (1960),
PARTITION s1 VALUES LESS THAN (1970)

);

In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data
that was stored in p0 into the new partitions according to the rules embodied in the two PARTITION
... VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than
1960 and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than
1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can return
the members table to its previous partitioning as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
PARTITION p0 VALUES LESS THAN (1970)

);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the
above statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition
p0.

The general syntax for REORGANIZE PARTITION is:

Partition Management

28

ALTER TABLE tbl_name
REORGANIZE PARTITION partition_list
INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions is a
comma-separated list of new partition definitions, which follow the same rules as for the parti-
tion_definitions list used in CREATE TABLE (see Section 7.1, “Partitioning Extensions to
CREATE TABLE”). It should be noted that you are not limited to merging several partitions into one, or
to splitting one partition into many, when using REORGANIZE PARTITION. For example, you can re-
organize all four partitions of the members table into two, as follows:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
PARTITION m0 VALUES LESS THAN (1980),
PARTITION m1 VALUES LESS THAN (2000)

);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return
to the problem of adding a new partition to the list-partitioned tt table and failing because the new par-
tition had a value that was already present in the value-list of one of the existing partitions. We can
handle this by adding a partition that contains only non-conflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved
to the new one:

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (

PARTITION p1 VALUES IN (6, 18),
PARTITION np VALUES in (4, 8, 12)

);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTI-
TION to repartition tables that are partitioned by RANGE or LIST:

• The PARTITION clauses used to determine the new partitioning scheme are subject to the same
rules as those used with a CREATE TABLE statement.

Most importantly, you should remember that the new partitioning scheme cannot have any overlap-
ping ranges (applies to tables partitioned by RANGE) or sets of values (when reorganizing tables par-
titioned by LIST).

Note: Prior to MySQL 5.1.4, you could not reuse the names of existing partitions in the INTO
clause, even when those partitions were being dropped or redefined. See Changes in release 5.1.4
(21 December 2005) [http://dev.mysql.com/doc/refman/5.1/en/news-5-1-4.html], for more informa-
tion.

• The combination of partitions in the partition_definitions list should account for the same
range or set of values overall as the combined partitions named in the partition_list.

For instance, in the members table used as an example in this section, partitions p1 and p2 togeth-
er cover the years 1980 through 1999. Therefore, any reorganization of these two partitions should
cover the same range of years overall.

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over
range partitions.

For instance, you could not reorganize the members table used as an example in this section using a
statement beginning with ALTER TABLE members REORGANIZE PARTITION p0,p2 IN-
TO ... because p0 covers the years prior to 1970 and p2 the years from 1990 through 1999 in-
clusive, and thus the two are not adjacent partitions.

Partition Management

29

http://dev.mysql.com/doc/refman/5.1/en/news-5-1-4.html
http://dev.mysql.com/doc/refman/5.1/en/news-5-1-4.html

• You cannot use REORGANIZE PARTITION to change the table's partitioning type; that is, you
cannot (for example) change RANGE partitions to HASH partitions or vice versa. You also cannot use
this command to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY
.... For example:

ALTER TABLE members
PARTITION BY HASH(YEAR(dob))
PARTITIONS 8;

4.2. Management of HASH and KEY Partitions
Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been parti-
tioned by range or list. For that reason, this section addresses the modification of tables partitioned by
hash or by key only. For a discussion of adding and dropping of partitions of tables that are partitioned
by range or list, see Section 4.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you
can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY parti-
tions using the ALTER TABLE ... COALESCE PARTITION command. For example, suppose that
you have a table containing data about clients, which is divided into twelve partitions. The clients ta-
ble is defined as shown here:

CREATE TABLE clients (
id INT,
fname VARCHAR(30),
lname VARCHAR(30),
signed DATE

)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE com-
mand:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or
LINEAR KEY. Here is an example similar to the previous one, differing only in that the table is parti-
tioned by LINEAR KEY:

mysql> CREATE TABLE clients_lk (
-> id INT,
-> fname VARCHAR(30),
-> lname VARCHAR(30),
-> signed DATE
->)
-> PARTITION BY LINEAR KEY(signed)
-> PARTITIONS 12;

Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note that the number following COALESCE PARTITION is the number of partitions to merge into the
remainder — in other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

Partition Management

30

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ...
ADD PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

4.3. Maintenance of Partitions
A number of partitioning maintenance tasks can be carried out in MySQL 5.1. MySQL does not support
the commands CHECK TABLE, OPTIMIZE TABLE, ANALYZE TABLE, or REPAIR TABLE for par-
titioned tables. Instead, you can use a number of extensions to ALTER TABLE which were implemen-
ted in MySQL 5.1.5. These can be used for performing operations of this type on one or more partitions
directly, as described in the following list:

• Rebuilding partitions: Rebuilds the partition; this has the same effect as dropping all records stored
in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions: If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR,
BLOB, or TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to re-
claim any unused space and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK
PARTITION, ANALYZE PARTITION, and REPAIR PARTITION on that partition.

• Analyzing partitions: This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions: This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

• Checking partitions: You can check partitions for errors in much the same way that you can use
CHECK TABLE with non-partitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This command will tell you if the data or indexes in partition p1 of table t1 are corrupted. If this is

Partition Management

31

the case, use ALTER TABLE ... REPAIR PARTITION to repair the partition.

You can also use the mysqlcheck or myisamchk utility to accomplish these tasks, operating on the
separate .MYI files generated by partitioning a table. See mysqlcheck
[http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html].

4.4. Obtaining Information About Partitions
This section discusses obtaining information about existing partitions, which can be done in a number of
ways. These include:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a par-
titioned table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the INFORMATION_SCHEMA.PARTITIONS table.

• Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given
SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION
BY clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************

Table: trb3
Create Table: CREATE TABLE `trb3` (

`id` int(11) default NULL,
`name` varchar(50) default NULL,
`purchased` date default NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (

PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM

)
1 row in set (0.00 sec)

Note: In early MySQL 5.1 releases, the PARTITIONS clause was not shown for tables partitioned by
HASH or KEY. This issue was fixed in MySQL 5.1.6.

SHOW TABLE STATUS works with partitioned tables. Beginning with MySQL 5.1.9, its output is the
same as that for non-partitioned tables, except that the Create_options column contains the string
partitioned. In MySQL 5.1.8 and earlier, the Engine column always contained the value PARTI-
TION; beginning with MySQL 5.1.9, this column contains the name of the storage engine used by all
partitions of the table. (See SHOW TABLE STATUS Syntax
[http://dev.mysql.com/doc/refman/5.1/en/show-table-status.html], for more information about this com-
mand.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See The INFORMATION_SCHEMA PARTITIONS Table
[http://dev.mysql.com/doc/refman/5.1/en/partitions-table.html].

Beginning with MySQL 5.1.5, it is possible to determine which partitions of a partitioned table are in-
volved in a given SELECT query using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a
partitions column to the output of EXPLAIN listing the partitions from which records would be
matched by the query.

Partition Management

32

http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html
http://dev.mysql.com/doc/refman/5.1/en/show-table-status.html
http://dev.mysql.com/doc/refman/5.1/en/partitions-table.html

Suppose that you have a table trb1 defined and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
PARTITION BY RANGE(id)
(

PARTITION p0 VALUES LESS THAN (3),
PARTITION p1 VALUES LESS THAN (7),
PARTITION p2 VALUES LESS THAN (9),
PARTITION p3 VALUES LESS THAN (11)

);

INSERT INTO trb1 VALUES
(1, 'desk organiser', '2003-10-15'),
(2, 'CD player', '1993-11-05'),
(3, 'TV set', '1996-03-10'),
(4, 'bookcase', '1982-01-10'),
(5, 'exercise bike', '2004-05-09'),
(6, 'sofa', '1987-06-05'),
(7, 'popcorn maker', '2001-11-22'),
(8, 'aquarium', '1992-08-04'),
(9, 'study desk', '1984-09-16'),
(10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: trb1
partitions: p0,p1,p2,p3

type: ALL
possible_keys: NULL

key: NULL
key_len: NULL

ref: NULL
rows: 10

Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the parti-
tioning key is added to the query, you can see that only those partitions containing matching values are
scanned, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: trb1
partitions: p0,p1

type: ALL
possible_keys: NULL

key: NULL
key_len: NULL

ref: NULL
rows: 10

Extra: Using where

EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the
standard EXPLAIN SELECT statement:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: trb1
partitions: p0,p1

type: range
possible_keys: PRIMARY

key: PRIMARY

Partition Management

33

key_len: 4
ref: NULL

rows: 7
Extra: Using where

You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:

• You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ...
SELECT statement. Attempting to do so produces a syntax error.

• If EXPLAIN PARTITIONS is used to examine a query against a non-partitioned table, no error is
produced, but the value of the partitions column is always NULL.

See also Optimizing Queries with EXPLAIN [http://dev.mysql.com/doc/refman/5.1/en/explain.html].

Partition Management

34

http://dev.mysql.com/doc/refman/5.1/en/explain.html

Chapter 5. Partition Pruning
This section discusses partition pruning, an opimisation which was implemented for partitioned tables in
MySQL 5.1.6.

The core concept behind partition pruning is relatively simple, and can be described as “Do not scan par-
titions where there can be no matching values”. For example, suppose you have a partitioned table t1
defined by this statement:

CREATE TABLE t1 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY RANGE(region_code) (

PARTITION p0 VALUES LESS THAN (64),
PARTITION p1 VALUES LESS THAN (128),
PARTITION p2 VALUES LESS THAN (192)
PARTITION p3 VALUES LESS THAN MAXVALUE

);

Consider the case where you wish to obtain results from a query such as this one:

SELECT fname, lname, postcode, dob
FROM t1
WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned will be in either of the partitions p0 or
p3; that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is pos-
sible to expend much more time and effort in finding matching rows than it is to scan all partitions in the
table. This “cutting away” of unneeded partitions is known as pruning. When the optimiser can make
use of partition pruning in performing a query, execution of the query can be an order of magnitude
faster than the same query against a non-partitioned table containing the same column definitions and
data.

The query optimiser can perform pruning whenever a WHERE condition can be reduced to either one of
the following:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given, determ-
ines which partition contains that value, and scans only this partition. In the second case, the optimizer
evaluates the partitioning expression for each value in the list, creates a list of matching partitions, and
then scans only the partitions in this partition list.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of val-
ues. For instance, in the previous example, the WHERE clause can be converted to WHERE re-
gion_code IN (125, 126, 127, 128, 129, 130). Then the optimizer can determine that
the first three values in the list are found in partition p1, the remaining three values in partition p2, and
that the other partitions contain no relevant values and so do not need to be searched for matching rows.

This type of optimization can be applied whenever the partitioning expression consists of an equality or
a range which can be reduced to a set of equalities. It can also be employed when the partitioning ex-
pression represents an increasing or decreasing relationship or uses a function such as YEAR() or
TO_DAYS() that produces an integer value when applied to a DATE or DATETIME column value. For

35

example, suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY RANGE(YEAR(dob)) (

PARTITION d0 VALUES LESS THAN (1970),
PARTITION d1 VALUES LESS THAN (1975),
PARTITION d2 VALUES LESS THAN (1980),
PARTITION d3 VALUES LESS THAN (1985),
PARTITION d4 VALUES LESS THAN (1990),
PARTITION d5 VALUES LESS THAN (2000),
PARTITION d6 VALUES LESS THAN (2005),
PARTITION d7 VALUES LESS THAN MAXVALUE

);

The following queries on t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

SELECT * FROM t2 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

SELECT * FROM t2 WHERE YEAR(dob)
IN (1979, 1980, 1983, 1985, 1986, 1988);

SELECT * FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last query, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions
may be safely ignored (and are ignored).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with oth-
er partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or decreas-
ing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that the re-
gion_code column is limited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY LIST(region_code) (

PARTITION r0 VALUES IN (1, 3),
PARTITION r1 VALUES IN (2, 5, 8),
PARTITION r2 VALUES IN (4, 9),
PARTITION r3 VALUES IN (6, 7, 10)

);

For a query such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the op-

Partition Pruning

36

timizer determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the re-
maining ones (r2 and r3).

For tables that are partitioned by HASH or KEY, partition pruning is also possible in cases in which the
WHERE clause uses a simple = relation against a column used in the partitioning expression. Consider a
table created like this:

CREATE TABLE t4 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY KEY(region_code)
PARTITIONS 8;

Any query such as this one can be pruned:

SELECT * FROM t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code
IN (3, 4, 5). Important: This optimization is used only if the range size is smaller than the num-
ber of partitions. Consider this query:

SELECT * FROM t4 WHERE region_code BETWEEN 4 AND 8;

The range in the WHERE clause covers 5 values (4, 5, 6, 7, 8), but t4 has only 4 partitions. This means
that the previous query cannot be pruned.

Pruning can be used only on integer columns of tables partitioned by HASH or KEY. For example, this
query on table t4 cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >=- '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col
>= 2001 AND year_col <= 2005 can be pruned.

Partition Pruning

37

Chapter 6. Restrictions and Limitations on
Partitioning

This section discusses current restrictions and limitations on MySQL partitioning support, as listed here:

• If, when creating tables with a very large number of partitions, you encounter an error message such
as Got error 24 from storage engine, you may need to increase the value of the
open_files_limit system variable. See 'File' Not Found and Similar Errors
[http://dev.mysql.com/doc/refman/5.1/en/not-enough-file-handles.html].

• Partitioned tables do not support foreign keys. This includes partitioned tables employing the In-
noDB storage engine.

• Partitioned tables do not support FULLTEXT indexes. This includes partitioned tables employing the
MyISAM storage engine.

• Partitioned tables do not support GEOMETRY columns.

• As of MySQL 5.1.8, temporary tables cannot be partitioned. (Bug#17497
[http://bugs.mysql.com/17497])

•
Tables using the MERGE storage engine cannot be partitioned.

Partitioned tables using the CSV storage engine are not supported. Starting with MySQL 5.1.12, it is
not possible to create partitioned CSV tables at all.

Prior to MySQL 5.1.6, tables using the BLACKHOLE storage engine also could not be partitioned.

Partitioning by KEY (or LINEAR KEY) is the only type of partitioning supported for the NDB stor-
age engine. Beginning with MySQL 5.1.12, it is not possible to create a Cluster table using any par-
titioning type other than [LINEAR] KEY, and attempting to do so gives rise to an error.

• When performing an upgrade, tables using any storage engine other than NDBCLUSTER and which
are partitioned by KEY must be dumped and reloaded.

• All of a table's partitions and subpartitions (if there are any of the latter) must use the same storage
engine.

• A partitioning key must be either an integer column or an expression that resolves to an integer. The
column or expression value may also be NULL. (See Section 3.6, “How MySQL Partitioning
Handles NULL Values”.)

The one exception to this restriction occurs when partitioning by [LINEAR] KEY — where it is pos-
sible to use columns of other types types as partitioning keys — because MySQL's internal key-
hashing functions produce the correct datatype from these types. For example, the following CRE-
ATE TABLE statement is valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

This exception does not apply to BLOB or TEXT column types.

• A partitioning key may not be a subquery, even if that subquery resolves to an integer value or
NULL.

38

http://dev.mysql.com/doc/refman/5.1/en/not-enough-file-handles.html
http://bugs.mysql.com/17497

•
All columns used in the partitioning expression for a partitioned table must be part of every unique
key that the table may have. In other words, every unique key on the table must use every column in
the tables partitioning expression. For example, each of the following table creation statements is in-
valid:

CREATE TABLE t1 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1),
UNIQUE KEY (col3)

)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

CREATE TABLE t3 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2),
UNIQUE KEY (col3)

)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2, col3)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col3)

)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

CREATE TABLE t3 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2, col3),
UNIQUE KEY (col3)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

Restrictions and Limitations on Partitioning

39

Since every primary key is by definition a unique key, this restriction also includes the table's
primary key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t4 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t5 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col3),
UNIQUE KEY(col2)

)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t6 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2)

)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t7 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2, col4),
UNIQUE KEY(col2, col1)

)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys — this includes having no primary key — then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
all columns used by the table's partitioning expression. Consider given the partitioned table defined
as shown here:

CREATE TABLE t_no_pk (c1 INT, c2 INT)
PARTITION BY RANGE(c1) (

PARTITION p0 VALUES LESS THAN (10),
PARTITION p1 VALUES LESS THAN (20),
PARTITION p2 VALUES LESS THAN (30),
PARTITION p3 VALUES LESS THAN (40)

);

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

possible PK
ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);

also a possible PK

Restrictions and Limitations on Partitioning

40

ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the
proposed primary key:

fails with ERROR 1482
ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing non-partitioned tables that you wish to partition using ALTER
TABLE ... PARTITION BY. Consider a table np_pk defined as shown here:

CREATE TABLE np_pk (
id INT NOT NULL AUTO_INCREMENT,
name VARCHAR(50),
added DATE,
PRIMARY KEY (id)

);

The following ALTER TABLE statements fails with an error, because the added column is not part
of any unique key in the table:

ALTER TABLE np_pk
PARTITION BY HASH(TO_DAYS(added))
PARTITIONS 4;

This statement, however, would be valid:

ALTER TABLE np_pk
PARTITION BY HASH(id)
PARTITIONS 4;

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if
you wish to partition this table using any other column or columns in the partitioning expression,
you must first modify the table, either by adding the desired column or columns to the primary key,
or by dropping the primary key altogether.

We are working to remove this limitation in a future MySQL release series.

• Subpartitions are limited to HASH or KEY partitioning. HASH and KEY partitions cannot be subparti-
tioned.

Restrictions and Limitations on Partitioning

41

Chapter 7. SQL Statements for Creating and
Altering Partitioned Tables

This chapter covers extensions to the MySQL CREATE TABLE and ALTER TABLE statements that
are specific to partitioned tables. For complete information about CREATE TABLE and ALTER TA-
BLE as implemented in MySQL 5.1, see CREATE TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/create-table.html], and ALTER TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/alter-table.html], in the MySQL 5.1 Manual.

For detailed information on the types of table partitioning supported in MySQL 5.1, see Chapter 3, Par-
tition Types.

For limitations on partitioned tables, see Chapter 6, Restrictions and Limitations on Partitioning.

7.1. Partitioning Extensions to CREATE TABLE
The following section covers the CREATE TABLE statement as it relates to partitioned tables in
MySQL 5.1. It assumes that you are already familiar with CREATE TABLE.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
(create_definition,...)
[table_option ...]
[partition_options]

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)]
[table_option ...]
[partition_options]
select_statement

partition_options:
PARTITION BY

[LINEAR] HASH(expr)
| [LINEAR] KEY(column_list)
| RANGE(expr)
| LIST(expr)

[PARTITIONS num]
[SUBPARTITION BY

[LINEAR] HASH(expr)
| [LINEAR] KEY(column_list)

[SUBPARTITIONS num]
]
[(partition_definition [, partition_definition] ...)]

partition_definition:
PARTITION partition_name

[VALUES {LESS THAN (expr) | MAXVALUE | IN (value_list)}]
[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text']
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
[TABLESPACE [=] (tablespace_name)]
[NODEGROUP [=] node_group_id]
[(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
SUBPARTITION logical_name

[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text']
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]

42

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

[MIN_ROWS [=] min_number_of_rows]
[TABLESPACE [=] (tablespace_name)]
[NODEGROUP [=] node_group_id]

CREATE TABLE creates a table with the given name. Rules for allowable table names are given in
Database, Table, Index, Column, and Alias Names
[http://dev.mysql.com/doc/refman/5.1/en/legal-names.html].

For information about other aspects of this statement not discussed here, see CREATE TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/create-table.html], in the MySQL 5.1 Manual.

7.1.1. Using the partition_options Clause
partition_options can be used to control partitioning of the table created with CREATE TABLE,
and if used, must contain at a minimum a PARTITION BY clause. This clause contains the function
that is used to determine the partition; the function returns an integer value ranging from 1 to num,
where num is the number of partitions. The choices that are available for this function in MySQL 5.1 are
shown in the following list.

Important: Not all options shown in the syntax for partition_options at the beginning of this
section are available for all partitioning types. Please see the listings for the following individual types
for information specific to each type, and see Partitioning
[http://dev.mysql.com/doc/refman/5.1/en/partitioning.html], for more complete information about the
workings of and uses for partitioning in MySQL, as well as additional examples of table creation and
other statements relating to MySQL partitioning.

• HASH(expr): Hashes one or more columns to create a key for placing and locating rows. expr is
an expression using one or more table columns. This can be any legal MySQL expression (including
MySQL functions) that yields a single integer value. For example, these are all valid CREATE TA-
BLE statements using PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
PARTITION BY HASH(ORD(col2));

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
PARTITION BY HASH (YEAR(col3));

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY
HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is,
the modulus). For examples and additional information, see Section 3.3, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the parti-
tion in which a row is stored is calculated as the result of one or more logical AND operations. For
discussion and examples of linear hashing, see Section 3.3.1, “LINEAR HASH Partitioning”.

• KEY(column_list): This is similar to HASH, except that MySQL supplies the hashing function
so as to guarantee an even data distribution. The column_list argument is simply a list of table
columns. This example shows a simple table partitioned by key, with 4 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY KEY(col3)
PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR
keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition

SQL Statements for Creating and Altering
Partitioned Tables

43

http://dev.mysql.com/doc/refman/5.1/en/legal-names.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/partitioning.html

number is found using the & operator rather than the modulus (see Section 3.3.1, “LINEAR HASH
Partitioning”, and Section 3.4, “KEY Partitioning”, for details). This example uses linear partitioning
by key to distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR KEY(col3)
PARTITIONS 5;

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY
KEY.

• RANGE: In this case, expr shows a range of values using a set of VALUES LESS THAN operators.
When using range partitioning, you must define at least one partition using VALUES LESS THAN.
You cannot use VALUES IN with range partitioning.

VALUES LESS THAN can be used with either a literal value or an expression that evaluates to a
single value.

Suppose that you have a table that you wish to partition on a column containing year values, accord-
ing to the following scheme:

Partition Number: Years Range:

0 1990 and earlier

1 1991 – 1994

2 1995 – 1998

3 1999 – 2002

4 2003 – 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

CREATE TABLE t1 (
year_col INT,
some_data INT

)
PARTITION BY RANGE (year_col) (

PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999),
PARTITION p3 VALUES LESS THAN (2002),
PARTITION p4 VALUES LESS THAN (2006),
PARTITION p5 VALUES LESS THAN MAXVALUE

);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VAL-
UES LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maxim-
um value otherwise specified.

Note that VALUES LESS THAN clauses work sequentially in a manner similar to that of the case
portions of a switch ... case block (as found in many programming languages such as C,
Java, and PHP). That is, the clauses must be arranged in such a way that the upper limit specified in
each successive VALUES LESS THAN is greater than that of the previous one, with the one refer-
encing MAXVALUE coming last of all in the list.

• LIST(expr): This is useful when assigning partitions based on a table column with a restricted set
of possible values, such as a state or country code. In such a case, all rows pertaining to a certain
state or country can be assigned to a single partition, or a partition can be reserved for a certain set of

SQL Statements for Creating and Altering
Partitioned Tables

44

states or countries. It is similar to RANGE, except that only VALUES IN may be used to specify al-
lowable values for each partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client_firms (
id INT,
name VARCHAR(35)

)
PARTITION BY LIST (id) (

PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)

);

When using list partitioning, you must define at least one partition using VALUES IN. You cannot
use VALUES LESS THAN with PARTITION BY LIST.

Note: Currently, the value list used with VALUES IN must consist of integer values only.

• The number of partitions may optionally be specified with a PARTITIONS num clause, where num
is the number of partitions. If both this clause and any PARTITION clauses are used, num must be
equal to the total number of any partitions that are declared using PARTITION clauses.

Note: Whether or not you use a PARTITIONS clause in creating a table that is partitioned by
RANGE or LIST, you must still include at least one PARTITION VALUES clause in the table
definition (see below).

• A partition may optionally be divided into a number of subpartitions. This can be indicated by using
the optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of
these may be LINEAR. These work in the same way as previously described for the equivalent parti-
tioning types. (It is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

• MySQL 5.1.12 introduces rigourous checking of the value used in a PARTITIONS or SUBPARTI-
TIONS clause. Beginning with this version, this value must adhere to the following rules:

• The value must be a positive, non-zero integer.

• No leading zeroes are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTI-
TIONS 0.2E+01 is not allowed, even though 0.2E+01 evaluates to 2. (Bug#15890
[http://bugs.mysql.com/15890])

7.1.2. Using partition_definition Clauses
Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name: This specifies a logical name for the partition.

• A VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN
clause; for list partitioning, you must specify a VALUES IN clause for each partition. This is used to
determine which rows are to be stored in this partition. See the discussions of partitioning types in

SQL Statements for Creating and Altering
Partitioned Tables

45

http://bugs.mysql.com/15890

Partitioning [http://dev.mysql.com/doc/refman/5.1/en/partitioning.html], for syntax examples.

• An optional COMMENT clause may be used to describe the partition. The comment must be set off in
single quotes. Example:

COMMENT = 'Data for the years previous to 1999'

• DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where, re-
spectively, the data and indexes for this partition are to be stored. Both the data_dir and the in-
dex_dir must be absolute system pathnames. Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(

PARTITION p1999 VALUES IN (1995, 1999, 2003)
DATA DIRECTORY = '/var/appdata/95/data'
INDEX DIRECTORY = '/var/appdata/95/idx',

PARTITION p2000 VALUES IN (1996, 2000, 2004)
DATA DIRECTORY = '/var/appdata/96/data'
INDEX DIRECTORY = '/var/appdata/96/idx',

PARTITION p2001 VALUES IN (1997, 2001, 2005)
DATA DIRECTORY = '/var/appdata/97/data'
INDEX DIRECTORY = '/var/appdata/97/idx',

PARTITION p2000 VALUES IN (1998, 2002, 2006)
DATA DIRECTORY = '/var/appdata/98/data'
INDEX DIRECTORY = '/var/appdata/98/idx'

);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the
data and indexes are stored by default in the MySQL data directory.

• MAX_ROWS and MIN_ROWS may be used to specify, respectively, the maximum and minimum
number of rows to be stored in the partition. The values for max_number_of_rows and
min_number_of_rows must be positive integers. As with the table-level options with the same
names, these act only as “suggestions” to the server and are not hard limits.

• The optional TABLESPACE clause may be used to designate a tablespace for the partition. Used for
MySQL Cluster only.

• Note: The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and
SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all sub-
partitions to the same storage engine, and an attempt to set different storage engines for partitions or
subpartitions in the same table will give rise to the error ERROR 1469 (HY000): The mix of hand-
lers in the partitions is not allowed in this version of MySQL. We expect to lift this restriction on
partitioning in a future MySQL release.

• The NODEGROUP option can be used to make this partition act as part of the node group identified
by node_group_id. This option is applicable only to MySQL Cluster. See MySQL Cluster
[http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html], in the MySQL 5.1 Manual.

• The partition definition may optionally contain one or more subpartition_definition
clauses. Each of these consists at a minimum of the SUBPARTITION name, where name is an
identifier for the subpartition. Except for the replacement of the PARTITION keyword with SUB-
PARTITION, the syntax for a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions.
See Section 3.5, “Subpartitioning”.

SQL Statements for Creating and Altering
Partitioned Tables

46

http://dev.mysql.com/doc/refman/5.1/en/partitioning.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information
about the MySQL statements to accomplish these tasks, see Section 7.2, “Partitioning Extnesions to the
ALTER TABLE Statement”. For more detailed descriptions and examples, see Chapter 4, Partition
Management.

7.2. Partitioning Extnesions to the ALTER TABLE
Statement

A number of partitioning-related extensions to ALTER TABLE, added in MySQL versions 5.1.5 and
later, are discussed in this section. ALTER TABLE options not relating directly to partitioned tables are
not covered here — for these, you should refer to ALTER TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/alter-table.html], in the MySQL 5.1 Manual.

ALTER [IGNORE] TABLE tbl_name
...
| PARTITION BY partition_options
| ADD PARTITION (partition_definition)
| DROP PARTITION partition_names
| COALESCE PARTITION number
| REORGANIZE PARTITION partition_names INTO (partition_definitions)
| ANALYZE PARTITION partition_names
| CHECK PARTITION partition_names
| OPTIMIZE PARTITION partition_names
| REBUILD PARTITION partition_names
| REPAIR PARTITION partition_names
| REMOVE PARTITIONING

The options listed above can be used with partitioned tables for repartitioning tables; for adding, drop-
ping, merging, and splitting table partitions; and for performing partitioning maintenance.

Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause al-
ways begins with PARTITION BY, and follows the same syntax and other rules as apply to the par-
tition_options clause for CREATE TABLE (see Section 7.1, “Partitioning Extensions to CREATE
TABLE”, for more detailed information), and can also be used to partition an existing table that is not
already partitioned. For example, consider a (non-partitioned) table defined as shown here:

CREATE TABLE t1 (
id INT,
year_col INT

);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions by
means of this statement:

ALTER TABLE t1
PARTITION BY HASH(id)
PARTITIONS 8;

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow the
same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules gov-
erning the relationship between any unique keys (including any primary key) that the table might have,
and the column or columns used in the partitioning expression, as discussed in Partitioning Limitations:
Partitioning Keys and Unique Keys. The CREATE TABLE ... PARTITION BY rules for specifying
the number of partitions also apply to ALTER TABLE ... PARTITION BY.

ALTER TABLE ... PARTITION BY became available in MySQL 5.1.6.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same
options as the clause of the same name does for the CREATE TABLE statement clause of the same

SQL Statements for Creating and Altering
Partitioned Tables

47

http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

name. (See Section 7.1, “Partitioning Extensions to CREATE TABLE”, for the syntax and description.)
Suppose that you have the partitioned table created as shown here:

CREATE TABLE t1 (
id INT,
year_col INT

)
PARTITION BY RANGE (year_col) (

PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999)

);

You can add a new partition p3 to this table for storing values less then 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement cannot
be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any data that
was stored in the dropped partitions named in the partition_names list is discarded. For example,
given the table t1 defined previously, you can drop the partitions named p0 and p1 as shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

Note that DROP PARTITION does not work with tables that use the NDB Cluster storage engine.
See Section 4.1, “Management of RANGE and LIST Partitions”, and Known Limitations of MySQL
Cluster [http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html].

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS. It is also
not possible to rename a partition or a partitioned table. Instead, if you wish to rename a partition, you
must drop and re-create the partition; if you wish to rename a partitioned table, you must instead drop all
partitions, rename the table, and then add back the partitions that were dropped.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce the
number of partitions by number. Suppose that you have created table t2 using the following defini-
tion:

CREATE TABLE t2 (
name VARCHAR (30),
started DATE

)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;

You can reduce the number of partitions used by t2 from 6 to 4 using the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions will be merged into the remaining partitions. In this
case, partitions 4 and 5 will be merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3.

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE PAR-
TITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This can be done by naming several partitions in
the partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. You can accomplish this by naming a single par-
tition for partition_names and providing multiple partition_definitions.

SQL Statements for Creating and Altering
Partitioned Tables

48

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value
lists for a subset of partitions defined using VALUES IN.

Note: For partitions that have not been explicitly named, MySQL automatically provides the default
names p0, p1, p2, and so on. As of MySQL 5.1.7, the same is true with regard to subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE PARTI-
TION statements, see Chapter 4, Partition Management.

Several additional clauses provide partition maintenance and repair functionality analogous to that im-
plemented for non-partitioned tables by statements such as CHECK TABLE and REPAIR TABLE
(which are not supported for partitioned tables). These include ANALYZE PARTITION, CHECK PAR-
TITION, OPTIMIZE PARTITION, REBUILD PARTITION, and REPAIR PARTITION. Each of
these options takes a partition_names clause consisting of one or more names of partitions, separ-
ated by commas. The partitions must already exist in the table to be altered. For more information, and
for examples of these, see Section 4.3, “Maintenance of Partitions”.

REMOVE PARTITIONING was introduced in MySQL 5.1.8 for the purpose of removing a table's parti-
tioning without otherwise affecting the table or its data. (Previously. this was done using the ENGINE
option.) This option can be combined with other ALTER TABLE options such as those used to add,
drop, or rename drop columns or indexes.

In MySQL 5.1.7 and earlier, using the ENGINE option with ALTER TABLE caused any partitioning
that a table might have had to be removed. Beginning with MySQL 5.1.8, this option merely changes the
storage engine used by the table and no longer affects partitioning in any way.

SQL Statements for Creating and Altering
Partitioned Tables

49

Chapter 8. The INFORMATION_SCHEMA
PARTITIONS Table

The PARTITIONS table provides information about table partitions.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

PARTITION_NAME MySQL extension

SUBPARTITION_NAME MySQL extension

PARTITION_ORDINAL_POSITION MySQL extension

SUBPARTI-
TION_ORDINAL_POSITION

MySQL extension

PARTITION_METHOD MySQL extension

SUBPARTITION_METHOD MySQL extension

PARTITION_EXPRESSION MySQL extension

SUBPARTITION_EXPRESSION MySQL extension

PARTITION_DESCRIPTION MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

PARTITION_COMMENT MySQL extension

NODEGROUP MySQL extension

TABLESPACE_NAME MySQL extension

Notes:

• The PARTITIONS table is a non-standard table. It was added in MySQL 5.1.6.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

• TABLE_CATALOG: This column is always NULL.

• TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

• TABLE_NAME: This column contains the name of the table containing the partition.

50

• PARTITION_NAME: The name of the partition.

• SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this
column contains the name of subpartition; otherwise it is NULL.

• PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are
defined, with 1 being the number assigned to the first partition. The indexing can change as parti-
tions are added, dropped, and reorganized; the number shown is this column reflects the current or-
der, taking into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed
and reindexed in the same manner as partitions are indexed within a table.

• PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LIN-
EAR KEY; that is, one of the available partitioning types as discussed in Chapter 3, Partition Types.

• SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY;
that is, one of the available subpartitioning types as discussed in Section 3.5, “Subpartitioning”.

• PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CRE-
ATE TABLE or ALTER TABLE statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
c1 INT,
c2 INT,
c3 VARCHAR(25)

)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this
table displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';

+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+
1 row in set (0.09 sec)

• SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expres-
sion that defines the subpartitioning for a table as PARTITION_EXPRESSION does for the parti-
tioning expression used to define a table's partitioning.

If the table has no subpartitions, then this column is NULL.

• PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE
partition, it contains the value set in the partition's VALUES LESS THAN clause, which can be
either an integer or MAXVALUE. For a LIST partition, this column contains the values defined in the
partition's VALUES IN clause, which is a comma-separated list of integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always
NULL.

• TABLE_ROWS: The number of table rows in the partition.

• AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

The INFORMATION_SCHEMA PARTI-
TIONS Table

51

This is the same as DATA_LENGTH divided by TABLE_ROWS.

• DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes — that
is, the total number of bytes stored in the partition or subpartition.

• MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or subpar-
tition.

• INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.

• DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.

• CREATE_TIME: The time of the partition's or subpartition's creation.

• UPDATE_TIME: The time that the partition or subpartition was last modified.

• CHECK_TIME: The last time that the table to which this partition or subpartition belongs was
checked.

Note: Some storage engines do not update this time; for tables using these storage engines, this value
is always NULL.

• CHECKSUM: The checksum value, if any; otherwise, this column is NULL.

• PARTITION_COMMENT: This column contains the text of any comment made for the partition.

The default value for this column is an empty string.

• NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to MySQL
Cluster tables; otherwise the value of this column is always 0.

• TABLESPACE_NAME: This column contains the name of tablespace to which the partition belongs.
In MySQL 5.1, the value of this column is always DEFAULT.

• Important: If any partitioned tables created in a MySQL version prior to MySQL 5.1.6 are present
following an upgrade to MySQL 5.1.6 or later, it is not possible to SELECT from, SHOW, or DE-
SCRIBE the PARTITIONS table. See Changes in release 5.1.6 (01 February 2006)
[http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html] before upgrading from MySQL 5.1.5 or
earlier to MySQL 5.1.6 or later.

• A non-partitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the
values of the PARTITION_NAME, SUBPARTITION_NAME, PARTI-
TION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PARTI-
TION_METHOD, SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTI-
TION_EXPRESSION, and PARTITION_DESCRIPTION columns are all NULL. (The PARTI-
TION_COMMENT column in this case is blank.)

In MySQL 5.1, there is also only one record in the PARTITIONS table for a table using the NDB-
Cluster storage engine. The same columns are also NULL (or empty) as for a non-partitioned ta-
ble.

The INFORMATION_SCHEMA PARTI-
TIONS Table

52

http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html

Index
A
ALTER TABLE, 47

C
changing

table, 47
composite partitioning, 17
CREATE TABLE, 42

D
dates

used with partitioning, 6
used with partitioning (examples), 9, 12, 17, 35

E
EXPLAIN PARTITIONS, 32, 32
EXPLAIN used with partitioned tables, 32

H
hash partitioning, 12
hash partitions

managing, 30
splitting and merging, 30

K
key partitioning, 15
key partitions

managing, 30
splitting and merging, 30

L
linear hash partitioning, 14
linear key partitioning, 16
list partitioning, 10
list partitions

adding and dropping, 24
managing, 24

O
obtaining information about partitions, 32

P
PARTITION, 1
partition management, 24
partition pruning, 35
partitioning, 1

advantages, 4
and dates, 6
by hash, 12
by key, 15
by linear hash, 14

by linear key, 16
by list, 10
by range, 7
concepts, 3
enabling, 3
limitations, 38
optimization, 32, 35
resources, 1
storage engines (limitations), 38
support, 3
types, 6

partitioning information statements, 32
partitioning keys and primary keys, 39
partitioning keys and unique keys, 39
partitions

adding and dropping, 24
analyzing, 31
checking, 31
managing, 24
modifying, 24
optimizing, 31
repairing, 31
splitting and merging, 24

PARTITIONS
INFORMATION_SCHEMA table, 50

R
range partitioning, 7
range partitions

adding and dropping, 24
managing, 24

S
subpartitioning, 16
subpartitions, 16

T
table

changing, 47

U
unique keys

and partitioning keys, 39, 39

53

	Guide to MySQL 5.1 Partitioning
	Table of Contents
	Chapter 1. Partitioning
	Chapter 2. Overview of Partitioning in MySQL
	Chapter 3. Partition Types
	3.1. RANGE Partitioning
	3.2. LIST Partitioning
	3.3. HASH Partitioning
	3.3.1. LINEAR HASH Partitioning

	3.4. KEY Partitioning
	3.5. Subpartitioning
	3.6. How MySQL Partitioning Handles NULL Values

	Chapter 4. Partition Management
	4.1. Management of RANGE and LIST Partitions
	4.2. Management of HASH and KEY Partitions
	4.3. Maintenance of Partitions
	4.4. Obtaining Information About Partitions

	Chapter 5. Partition Pruning
	Chapter 6. Restrictions and Limitations on Partitioning
	Chapter 7. SQL Statements for Creating and Altering Partitioned Tables
	7.1. Partitioning Extensions to CREATE TABLE
	7.1.1. Using the partition_options Clause
	7.1.2. Using partition_definition Clauses

	7.2. Partitioning Extnesions to the ALTER TABLE Statement

	Chapter 8. The INFORMATION_SCHEMA PARTITIONS Table
	Index

