Guide to MySQL 5.1 Partitioning



Guide to MySQL 5.1 Partitioning

Abstract

This Guide covers MySQL 's partitioning implementation as of MySQL 5.1.12-beta. It includes informa-
tion on the following topics:

» Partitioning types supported by MySQL 5.1
» Creating and atering partitioned tables
e Managing partitions and partitioned tables

» Itemsto take under consideration when designing partitioned tables and writing applications that use
them.

e Current restrictions and limitations on MySQL partitioning

This Guide is not intended to serve as a complete reference to the MySQL Server or client programs, nor
to writing applications that use MySQL. For information about these and related subjects, you should
refer to the MySQL 5.1 Manual.

The information in this Guide — generated on 2006-10-26 (revision: 3752) — was current for MySQL
5.1.12-beta. For the latest information, you should check the MySQL documentation available on the
MySQL Web site, at http://dev.mysql.com/doc/.

Copyright ©1997-2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: Y ou may
create a printed copy of this documentation solely for your own personal use. Conversion to other formatsiis allowed as long as the
actual content is not altered or edited in any way. Y ou shall not publish or distribute this documentation in any form or on any me-
dia, except if you distribute the documentation in a manner similar to how MySQL disseminatesit (that is, electronically for down-
load on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is dissemin-
ated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this doc-
umentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

Please email <docs@rysql . conm> for more information.



http://dev.mysql.com/doc/




Table of Contents

L PaArtitiONING ... eeeeti ettt eeaaas 1
2. Overview of Partitioning in MYSQL .........iiiiiiiiii e 3
I = U (o T Y o= TP UPTRUPTN 6
I I A € = == T e Vo P 7

T I S I = 0 311 o 10

3.3 HASH Partitioning ....cc.uuiieenieeiiee e e e e e e e e e e e e et e e e e e ean e eees 12
3.3.1. LI NEAR HASH Partitioning ........cccuuuieeeiuiniieiiiieeeeiie et 14

34 KEY Partitioning .......uuieiiiiiieiiii ettt 15

3.5, SUBPAITITIONING ...eeeeeet et 16

3.6. How MySQL Partitioning Handles NULL ValUeS ..........ccovvviiiiiiiiiiiiiieeeceea, 19

4, Partition ManagemeNt .......c.uuiiii e e e e e e e e 24
4.1. Management of RANGE and LI ST Partitions ..........cccoevveiiiiiiiiiiie e 24

4.2. Management of HASH and KEY Partitions .............oooeuviiiiiiiinieiiiinccci e, 30

4.3. Maintenance Of PartitionS .............ooveiiiiiiiiii e 31

4.4. Obtaining Information About Partitions ............ccoviiiiiiiiiiii e 32

L = (T T8 1 1 o 35
6. Restrictions and Limitations on Partitioning ...........c.oeeveeiiiiiiieiiinecin e e e e e 38
7. SQL Statements for Creating and Altering Partitioned Tables ...........ccccevvveiiviiiiveveneennn, 42
7.1. Partitioning Extensionsto CREATE TABLE .....cooiiiiiiiiiiii e 42
7.1.1. Usingthepartition_options Clause ......cccccoevveiiiiieiiiiinieiiiineeeenn, 43
7.12.Usingpartition_definitionClauses .......ccooviiiiiiiiiiiiiiiniiineeannn. 45

7.2. Partitioning Extnesionsto the ALTER TABLE Statement ............ccooeevviiiiiiennnen. 47

8. The | NFORVATI ON_SCHENA PARTI TI ONS Table ...cecvvniiiiiiieeeeiin e 50
g0 (= PSP 53




Chapter 1. Partitioning

This document discusses user-defined partitioning, asimplemented in MySQL 5.1.

An overview of MySQL partitioning and partitioning concepts may be found in Chapter 2, Overview of
Partitioning in MySQL.

MySQL supports several types of partitioning, which are discussed in Chapter 3, Partition Types, as
well as subpartitioning, which is described in Section 3.5, “ Subpartitioning”.

Methods of adding, removing, and atering partitions in existing partitioned tables are covered in
Chapter 4, Partition Management.

Syntax information for partitioning extensions to the CREATE TABLE and ALTER TABLE statements
can be found in Section 7.1, “ Partitioning Extensionsto CREATE TABLE”, and Section 7.2,
“Partitioning Extnesionsto the ALTER TABLE Statement”.

Table maintenance commands for use with partitioned tables are discussed in Section 4.3, “Maintenance
of Partitions’.

The | NFORMVATI ON_SCHENA. PARTI TI ONS table, which contains informatin about table partitions,
is described in Chapter 8, The | NFORMATI ON_SCHENMA PARTI TI ONS Table.

Important: Partitioned tables created with MySQL versions prior to 5.1.6 cannot be read by a5.1.6 or
later MySQL Server. In addition, the | NFORVATI ON_SCHENMA. TABLES table cannot be used if such
tables are present on a 5.1.6 server. Beginning with MySQL 5.1.7, a suitable warning message is gener-
ated instead, to alert the user that incompatible partitioned tables have been found by the server.

Important: If you are using partitioned tables which were created in MySQL 5.1.5 or earlier, be sure to
see Changesin release 5.1.6 (01 February 2006)
[http://dev.mysqgl.com/doc/refman/5.1/en/news-5-1-6.html] for more information and suggested work-
arounds before upgrading to MySQL 5.1.6 or later.

The partitioning implementation in MySQL 5.1 is still undergoing devel opment. For known issues with
MySQL partitioning, see Chapter 6, Restrictions and Limitations on Partitioning, where we have noted
these.

Y ou may also find the following resources to be useful when working with partitioned tables.

Additional Resour ces:

*  MySQL Partitioning Forum [http://forums.mysgl.com/list.php?106]

Thisisthe official discussion forum for those interested in or experimenting with MySQL Partition-
ing technology. It features announcements and updates from MySQL devel opers and others. Itis
monitored by members of the Partitioning Development and Documentation Teams.

* Mikael Ronstrom's Blog [http://mikael ronstrom.bl ogspot.com/]

MySQL Partitioning Architect and Lead Developer Mikael Ronstrém frequently posts articles here
concerning hiswork with MySQL Partitioning and MySQL Cluster.

e PlanetMySQL [http://www.planetmysql.org/]
A MySQL news site featuring MySQL -related blogs, which should be of interest to anyone using my

MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

1


http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html
http://forums.mysql.com/list.php?106
http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/

Partitioning

MySQL 5.1 binaries are now available from http://dev.mysgl.com/downloads/mysql/5.1.html. However,
for the latest partitioning bugfixes and feature additions, you can obtain the source from our BitK eeper
repository. To enable partitioning, you need to compile the server usingthe- - wi t h-partiti on op-
tion. For more information about building MySQL, see MySQL Installation Using a Source Distribution
[http://dev.mysql.com/doc/refman/5.1/en/installing-source.html]. If you have problems compiling a par-
titioning-enabled MySQL 5.1 build, check the MySQL Partitioning Forum
[http://forums.mysqgl.com/list.php?106] and ask for assistance there if you don't find a solution to your
problem already posted.



http://dev.mysql.com/downloads/mysql/5.1.html
http://dev.mysql.com/doc/refman/5.1/en/installing-source.html
http://forums.mysql.com/list.php?106

Chapter 2. Overview of Partitioning in MySQL

This section provides a conceptua overview of partitioning in MySQL 5.1.

For information on partitioning restrictions and feature limitations, see Chapter 6, Restrictions and Lim-
itations on Partitioning.

The SQL standard does not provide much in the way of guidance regarding the physical aspects of data
storage. The SQL language itself is intended to work independently of any data structures or media un-
derlying the schemas, tables, rows, or columns with which it works. Nonetheless, most advanced data-
base management systems have evolved some means of determining the physical location to be used for
storing specific pieces of datain terms of the filesystem, hardware or even both. In MySQL, the | n-
noDB storage engine has long supported the notion of atablespace, and the MySQL Server, even prior
to the introduction of partitioning, could be configured to employ different physical directories for stor-
ing different databases (see Using Symbolic Links
[http://dev.mysql.com/doc/refman/5.1/en/symbolic-links.html], for an explanation of how thisis done).

Partitioning takes this notion a step further, by allowing you to distribute portions of individual tables
across a filesystem according to rules which you can set largely as needed. In effect, different portions
of atable are stored as separate tables in different locations. The user-selected rule by which the division
of datais accomplished is known as a partitioning function, which in MySQL can be the modulus,
simple matching against a set of ranges or value lists, an internal hashing function, or alinear hashing
function. The function is selected according to the partitioning type specified by the user, and takes asiits
parameter the value of a user-supplied expression. This expression can be either an integer column
value, or afunction acting on one or more column values and returning an integer. The value of this ex-
pression is passed to the partitioning function, which returns an integer value representing the number of
the partition in which that particular record should be stored. This function must be non-constant and
non-random. It may not contain any queries, but may use virtually any SQL expression that isvalidin
MySQL, so long as that expression returns a positive integer less than MAXVAL UE (the greatest possible
positive integer). Examples of partitioning functions can be found in the discussions of partitioning
types later in this chapter (see Chapter 3, Partition Types), aswell asin the partitioning syntax descrip-
tions given in Section 7.1, “Partitioning Extensionsto CREATE TABLE".

Thisisknown as horizontal partitioning — that is, different rows of atable may be assigned to different
physical partitions. MySQL 5.1 does not support vertical partitioning, in which different columns of a
table are assigned to different physical partitions. There are not at this time any plans to introduce vertic-
al partitioning into MySQL 5.1.

Partitioning support isincluded in the - max releases of MySQL 5.1 (that is, the 5.1 - max binaries will
be built with - - wi t h- par tition).If the MySQL binary is built with partitioning support, nothing
further needsto be done in order to enable it (for example, no special entries are required in your

ny. cnf file). You can determine whether your MySQL server supports partitioning by means of a
SHOW VARI ABLES command such asthis one:

nmysqgl > SHOW VARI ABLES LI KE ' %partition% ;

mocccooccoccooocooos fmooccos +
| Vari abl e_nane | Val ue |
fmoccocccoccoococooan fooccooo +
| have_partitioning | YES |
g R +

1 rowin set (0.00 sec)

If you do not seethehave_partiti oni ng variable with the value YES listed as shown above in the
output of an appropriate SHOW VARI ABLES, then your version of MySQL does not support partition-

ing.

Prior to MySQL 5.1.6, thisvariable was named have partiti on_engi ne. (Bug#l6718
[http://bugs.mysgl.com/16718])



http://dev.mysql.com/doc/refman/5.1/en/symbolic-links.html
http://bugs.mysql.com/16718

Overview of Partitioning in MySQL

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runsin a separate layer and can interact with any of these. In
MySQL 5.1, all partitions of the same partitioned table must use the same storage engine; for ex-
ample, you cannot use My | SAMfor one partition and | nnoDB for another. However, there is nothing
preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

Note: MySQL partitioning cannot be used with the VERGE or CSV storage engines. Prior to MySQL
5.1.6, it was also not feasible to create a partitioned table using the BLACKHOLE storage engine.
(Bug#14524 [ http://bugs.mysgl.com/14524]). Partitioning by KEY is supported for use with the NDB-
Cl ust er storage engine, but other types of user-defined partitioning are not supported for Cluster
tablesin MySQL 5.1.

To employ aparticular storage engine for a partitioned table, it is necessary only to usethe [ STORAGE]
ENG NE option just as you would for a non-partitioned table. However, you should keep in mind that

[ STORAGE] ENG NE (and other table options) need to be listed before any partitioning options are
used in a CREATE TABLE statement. This example shows how to create atable that is partitioned by
hash into 6 partitions and which usesthe | nnoDB storage engine:

CREATE TABLE ti (id INT, anount DECIMAL(7,2), tr_date DATE)
ENG NE=I NNCDB
PARTI TI ON BY HASH( MONTH(tr _date) )
PARTI TI ONS 6;

(Note that each PARTI TI ON clause canincludea[ STORAGE] ENG NE option, butin MySQL 5.1
this has no effect.)

Note: Partitioning applies to al data and indexes of atable; you cannot partition only the data and not
the indexes, or vice versa, nor can you partition only a portion of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DI RECT-
ORY and | NDEX DI RECTORY options for the PARTITION clause of the CREATE TABLE statement
used to create the partitioned table. In addition, MAX_ ROWS and M N_ROWS can be used to determine
the maximum and minimum numbers of rows, respectively, that can be stored in each partition. See
Chapter 4, Partition Management, for more information on these options.

Some of the advantages of partitioning include:

» Being able to store more data in one table than can be held on asingle disk or filesystem partition.

» Datathat losesits usefulness can often be easily be removed from the table by dropping the partition
containing only that data. Conversely, the process of adding new data can in some cases be greatly
facilitated by adding a new partition specifically for that data.

» Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause
can be stored only on one or more partitions, thereby excluding any remaining partitions from the
search. Because partitions can be altered after a partitioned table has been created, you can reorgan-
ize your data to enhance frequent queries that may not have been so when the partitioning scheme
was first set up. This capability, sometimes referred to as partition pruning, was implemented in
MySQL 5.1.6. For additional information, see Chapter 5, Partition Pruning.

Other benefits usually associated with partitioning include those in the following list. These features are
not currently implemented in MySQL Partitioning, but are high on our list of priorities.

* Queriesinvolving aggregate functions such as SUM ) and COUNT( ) can easily be parallelized. A
simple example of such aquery might be SELECT sal esperson_id, COUNT(orders) as

4


http://bugs.mysql.com/14524

Overview of Partitioning in MySQL

order_total FROM sal es GROUP BY sal esperson_i d; . By “pardlelized,” we mean
that the query can be run simultaneously on each partition, and the final result obtained merely by
summing the results obtained for all partitions.

» Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as Partitioning development continues.




Chapter 3. Partition Types

This section discusses the types of partitioning which are availablein MySQL 5.1. These include:

*  RANCE partitioning: Assigns rowsto partitions based on column values falling within a given
range. See Section 3.1, “RANCE Partitioning”.

e LI ST partitioning: Similar to partitioning by range, except that the partition is selected based on
columns matching one of a set of discrete values. See Section 3.2, “LI ST Partitioning”.

» HASH partitioning: A partition is selected based on the value returned by a user-defined expression
that operates on column values in rows to be inserted into the table. The function may consist of any
expression valid in MySQL that yields a non-negative integer value. See Section 3.3, “HASH Parti-
tioning”.

» KEY partitioning: Similar to partitioning by hash, except that only one or more columns to be evalu-
ated are supplied, and the MySQL server provides its own hashing function. These columns can con-
tain other than integer values, since the hashing function supplied by MySQL guarantees an integer
result regardless of the column data type. See Section 3.4, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems support
explicit date partitioning, which MySQL does not implement in 5.1. However, it is not difficult in
MySQL to create partitioning schemes based on DATE, Tl VE, or DATETI ME columns, or based on ex-
pressions making use of such columns.

When partitioning by KEY or LI NEAR KEY, you can use a DATE, Tl VE, or DATETI MVE column as the
partitioning column without performing any modification of the column value. For example, thistable
creation statement is perfectly valid in MySQL:

CREATE TABLE nenbers (
firstname VARCHAR(25) NOT NULL,
| ast nane VARCHAR(25) NOT NULL,
user name VARCHAR(16) NOT NULL,
emai | VARCHAR( 35),
joi ned DATE NOT NULL

)
PARTI TI ON BY KEY(j oi ned)
PARTI TI ONS 6;

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LI ST, HASH, or LI NEAR HASH, you
can simply employ afunction that operates on a DATE, TI ME, or DATETI ME column and returns such a
value, as shown here:

CREATE TABLE nenbers (
firstname VARCHAR(25) NOT NULL,
| ast name VARCHAR(25) NOT NULL,
user nane VARCHAR(16) NOT NULL,
emai | VARCHAR( 35),
joi ned DATE NOT NULL

PARTI TI ON BY RANGE( YEAR(j oi ned) ) (
PARTI TI ON p0 VALUES LESS THAN (1960),
PARTI TI ON pl VALUES LESS THAN (1970),
PARTI TI ON p2 VALUES LESS THAN (1980),
PARTI TI ON p3 VALUES LESS THAN (1990),
PARTI TI ON p4 VALUES LESS THAN MAXVALUE

Additional examples of partitioning using dates may be found here:




Partition Types

o Section 3.1, “RANGE Partitioning”
e Section 3.3, “HASH Partitioning”

» Section3.3.1, “LI NEAR HASH Partitioning”
For more complex examples of date-based partitioning, see:

e Chapter 5, Partition Pruning

e Section 3.5, “ Subpartitioning”

MySQL partitioning is optimised for use with the TO_DAYS() and YEAR() functions. However, you
can use other date and time functions that return an integer or NULL, such as WEEKDAY( ) , DAY-
OFYEAR() , or MONTH( ) . See Date and Time Functions
[http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html], for more information about
such functions.

It isimportant to remember — regardless of the type of partitioning that you use — that partitions are al-
ways numbered automatically and in sequence when created, starting with 0. When a new row isinser-
ted into a partitioned table, it is these partition numbers that are used in identifying the correct partition.
For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For the RANGE
and LI ST partitioning types, it is necessary to ensure that there is a partition defined for each partition
number. For HASH partitioning, the user function employed must return an integer value greater than O.
For KEY partitioning, thisissue is taken care of automatically by the hashing function which the MySQL
server employsinternally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for
tables and databases. However, you should note that partition names are not case-sensitive. For example,
the following CREATE TABLE statement fails as shown:

mysql > CREATE TABLE t2 (val [NT)
-> PARTI TION BY LI ST(val)(
-> PARTI TI ON nypart VALUES IN (1, 3,5),
-> PARTI TI ON MyPart VALUES IN (2, 4, 6)
-> )
ERROR 1488 (HY000): Duplicate partition nane nypart

Failure occurs because MySQL sees no difference between the partition names nypar t and MyPar t .

When you specify the number of partitions for the table, this must be expressed as a positive, non-zero
integer literal with no leading zeroes, and may not be an expression such as0. 8E+01 or 6- 2, evenif it
evaluates as an integer. (Beginning with MySQL 5.1.12, decimal fractions are no longer truncated, but
instead are disallowed entirely.)

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be
used for creating each partition type; this information may be found in Section 7.1, “Partitioning Exten-
sionsto CREATE TABLE".

3.1. RANGE Partitioning

A table that is partitioned by range is partitioned in such away that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but not
overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:



http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html

Partition Types

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30),
| nane VARCHAR( 30) ,
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT '9999-12-31',
job_code | NT NOT NULL,
store_id I NT NOT NULL

Thistable can be partitioned by range in anumber of ways, depending on your needs. One way would
betousethest or e_i d column. For instance, you might decide to partition the table 4 ways by adding
aPARTI TI ON BY RANGE clause as shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30),
| nane VARCHAR( 30) ,
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT ' 9999-12-31',
job_code | NT NOT NULL,
store_id I NT NOT NULL

)
PARTI TI ON BY RANGE (store_id) (

PARTI TI ON p0 VALUES LESS THAN (6),
PARTI TI ON p1 VALUES LESS THAN (11),
PARTI TI ON p2 VALUES LESS THAN (16),
PARTI TI ON p3 VALUES LESS THAN (21)

In this partitioning scheme, al rows corresponding to employees working at stores 1 through 5 are
stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and so on.
Note that each partition is defined in order, from lowest to highest. Thisis a requirement of the PARTI -
TI ON BY RANGCE syntax; you can think of it as being analogoustoaswi tch ... caseinCor
Javain thisregard.

It is easy to determine that a new row containing thedata( 72, ' M chael ', ' W deni us',
'1998- 06- 25", NULL, 13) isinsertedinto partition p2, but what happens when your chain adds
a21% store? Under this scheme, there is no rule that covers arow whose st or e_i d is greater than 20,
so an error results because the server does not know where to placeit. Y ou can keep this from occurring
by using a“catchall” VALUES LESS THAN clauseinthe CREATE TABLE statement that provides for
all values greater than highest value explicitly named:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30),
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT '9999-12-31',
job_code I NT NOT NULL,
store_id I NT NOT NULL

)
PARTI TI ON BY RANGE (store_id) (
PARTI TI ON pO VALUES LESS THAN (6),
PARTI TI ON pl VALUES LESS THAN (11),
PARTI TI ON p2 VALUES LESS THAN (16),
PARTI TI ON p3 VALUES LESS THAN MAXVALUE

MAXVAL UE represents the greatest possible integer value. Now, any rowswhose st or e_i d column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future — when the number of stores has increased to 25, 30, or more — you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Chapter 4, Partition
Management, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes — that is, based on
ranges of j ob_code column values. For example — assuming that two-digit job codes are used for

8



Partition Types

regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit
codes are used for management positions — you could create the partitioned table using the following:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30) ,
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT '9999-12-31',
job_code | NT NOT NULL,
store_id I NT NOT NULL

)

PARTI TI ON BY RANGE (j ob_code) (
PARTI TI ON pO VALUES LESS THAN (100),
PARTI TI ON p1 VALUES LESS THAN (1000),
PARTI TI ON p2 VALUES LESS THAN (10000)

In thisinstance, al rows relating to in-store workers would be stored in partition pO, those relating to of-
fice and support staff in p1, and those relating to managersin partition p2.

Itisalso possibleto use an expressionin VALUES LESS THAN clauses. However, MySQL must be
able to evaluate the expression's return value as part of aLESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on
one of the two DATE columns instead. For example, |et us suppose that you wish to partition based on
the year that each employee |eft the company; that is, the value of YEAR( separ at ed) . An example of
aCREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30) ,
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT '9999-12-31',
j ob_code | NT,
store_id I NT

)

PARTI TI ON BY RANGE ( YEAR(separated) ) (
PARTI TI ON pO VALUES LESS THAN (1991),
PARTI TI ON p1 VALUES LESS THAN (1996),

PARTI TI ON p2 VALUES LESS THAN (2001),

PARTI TI ON p3 VALUES LESS THAN MAXVALUE

In this scheme, for all employees who left before 1991, the rows are stored in partition pO; for those
who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in
p2; and for any workers who left after the year 2000, in p3.

Range partitioning is particularly useful when:

* Youwant or need to delete “old” data. If you are using the partitioning scheme shown immediately
above, you can simply use ALTER TABLE enpl oyees DROP PARTI Tl ON pO; to deleteall
rows relating to employees who stopped working for the firm prior to 1991. (See Section 7.2,
“Partitioning Extnesionsto the ALTER TABLE Statement”, and Chapter 4, Partition Management,
for more information.) For atable with a great many rows, this can be much more efficient than run-
ning aDELETE query such asDELETE FROM enpl oyees WHERE YEAR(separated) <=
1990; .

e You want to use a column containing date or time values, or containing values arising from some
other series.

* You frequently run queries that depend directly on the column used for partitioning the table. For ex-
ample, when executing aquery such as SELECT COUNT(*) FROM enpl oyees WHERE
YEAR( separ ated) = 2000 GROUP BY store_id;, MySQL can quickly determine that




Partition Types

only partition p2 needs to be scanned because the remaining partitions cannot contain any records
satisfying the WHERE clause. See Chapter 5, Partition Pruning, for more information about how this
is accomplished.

3.2. LI ST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. Asin partitioning by RANGE,
each partition must be explicitly defined. The chief differenceisthat, in list partitioning, each partitionis
defined and selected based on the membership of a column value in one of a set of value lists, rather
than in one of a set of contiguous ranges of values. Thisis done by using PARTI TI ON BY LI ST( ex-
pr) whereexpr isacolumn value or an expression based on a column value and returning an integer
value, and then defining each partition by meansof aVALUES | N (val ue_|i st),where

val ue_l i st isacomma-separated list of integers.

Note: In MySQL 5.1, it is possible to match against only alist of integers (and possibly NULL — see
Section 3.6, “How MySQL Partitioning Handles NULL Values') when partitioning by LI ST.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particu-
lar order. For more detailed syntactical information, see Section 7.1, “Partitioning Extensions to CRE-
ATE TABLE".

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the CREATE TABLE statement shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30),
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT ' 9999-12-31',
j ob_code | NT,
store_id | NT

(Thisisthe sametable used as a basis for the examplesin Section 3.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table:

Region Store D Numbers
North 3,569 17

East 1,2,10,11, 19,20
West 4,12,13, 14,18
Central 7,8,15,16

To partition this table in such away that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30) ,
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT ' 9999-12-31',
j ob_code | NT,
store_id I NT

)

PARTI TI ON BY LI ST(store_id) (
PARTI TI ON pNorth VALUES IN (3,5, 6,9, 17),
PARTI TI ON pEast VALUES IN (1,2, 10, 11, 19, 20),

10




Partition Types

PARTI TI ON pWest VALUES | N (4,12, 13, 14, 18),
PARTI TI ON pCentral VALUES IN (7, 8, 15, 16)

Thismakes it easy to add or drop employee records relating to specific regions to or from the table. For
instance, suppose that all stores in the West region are sold to another company. All rows relating to em-
ployees working at storesin that region can be deleted with the query ALTER TABLE enpl oyees
DROP PARTI TI ON pWeést ; , which can be executed much more efficiently than the equivalent DE-
LETE statement DELETE FROM enpl oyees WHERE store_id IN (4, 12,13, 14,18);.

As with RANGE and HASH partitioning, if you wish to partition a table by a column whose value is not
an integer or NULL, you must employ a partitioning expression based on that column which returns such
avalue. For example, suppose that the table containing employee data is defined as shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30),
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separat ed DATE NOT NULL DEFAULT ' 9999-12-31',
j ob_code CHAR(1),
store_id I NT

In thisversion of the enpl oyees table, the job code is aletter rather than a number. Each letter corres-
ponds to a specific job, and we wish to partition the table in such away that records for employees hav-

ing similar jobs or working in the same department are grouped into the same partition, according to the
following scheme:

Job Category or Department Job Codes
Management D,M,O,P
Sales B,L,S
Technica A EGIT
Clerica K,N,Y
Support C,FJRYV
Unassigned “Empty”

Since we cannot use character valuesin value-lists, we need to convert these into integers or NULLs. For
this purpose, we can usethe ASCI | () function on the column value. In addition — due to the use of
different applications at different times and locations — these codes may be either uppercase or lower-
case, and the “empty” value representing “currently unassigned” may actually be aNULL, an empty
string, or a space character. A partitioned table that implements this scheme is shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30),
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT '9999-12-31',
j ob_code CHAR(1),
store_id I NT

)
PARTI TI ON BY LI ST(ASCI | ( UCASE(j ob_code) ))

PARTI TI ON
PARTI TI ON
PARTI TI ON
PARTI TI ON
PARTI TI ON
PARTI TI ON

(
managenment VALUES I N(68, 77, 79, 80),
sal es VALUES | N(66, 76, 83),
techni cal VALUES | N(65, 69, 71, 73, 84),
clerical VALUES IN(75, 78, 89),
support VALUES IN(67, 70, 74, 82, 86),
unassi gned VALUES | N(NULL, 0, 32)

11



Partition Types

Since expressions are not permitted in partition value lists, you must list the ASCII codes for the letters
that are to be matched. Note that ASCI | ( NULL) returns NULL.

Important: If you try to insert arow such that the column value (or the partitioning expression's return
value) is not found in any of the partitioning value lists, the | NSERT query will fail with an error. For
example, giventhe LI ST partitioning scheme just outlined, this query will fail:

I NSERT | NTO enpl oyees VALUES
(224, 'Linus', 'Torvalds', '2002-05-01', '2004-10-12', 'Q, 21);

Failure occurs because 81 (the ASCI| code for the uppercase letter ' @ is not found in any of the value
lists used to define any of the partitions. Thereisno “ catch-all” definition for list partitions analogous
to VALUES LESS THAN( MAXVALUE) which accommodates values not found in any of the value
lists. In other words, any value which is to be matched must be found in one of the value lists.

Aswith RANGE partitioning, it is possible to combine LI ST partitioning with partitioning by hash or
key to produce a composite partitioning (subpartitioning). See Section 3.5, “ Subpartitioning”.

3.3. HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a
given column value or set of column valuesis to be stored; with hash partitioning, MySQL takes care of
thisfor you, and you need only specify a column value or expression based on a column value to be
hashed and the number of partitions into which the partitioned table is to be divided.

To partition atable using HASH partitioning, it is necessary to append to the CREATE TABLE statement
aPARTI TI ON BY HASH (expr) clause, whereexpr isan expression that returns an integer. This
can simply be the name of a column whose typeis one of MySQL 'sinteger types. In addition, you will
most likely want to follow thiswith a PARTI TI ONS numclause, where numis a non-negative integer
representing the number of partitions into which the table is to be divided.

For example, the following statement creates a table that uses hashing onthe st or e i d columnand is
divided into 4 partitions:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30),
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT ' 9999-12-31',
j ob_code | NT,
store_id I NT

)
PARTI TI ON BY HASH( st ore_i d)
PARTI TI ONS 4;

If you do not include a PARTI Tl ONS clause, the number of partitions defaultsto 1.
Using the PARTI T1 ONS keyword without a number following it resultsin a syntax error.

Y ou can aso use an SQL expression that returns an integer for expr . For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE enpl oyees (
id INT NOT NULL,
f name VARCHAR( 30) ,
| name VARCHAR( 30),
hired DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT '9999-12-31',
j ob_code | NT,
store_id I NT

12



Partition Types

PARTI TI ON BY HASH( YEAR(hired) )
PARTI TI ONS 4;

Y ou may use any function or other expression for expr that isvalid in MySQL, so long asit returns a
non-constant, non-random integer value. (In other words, it should be varying but deterministic.)
However, you should keep in mind that this expression is evaluated each time arow isinserted or up-
dated (or possibly deleted); this means that very complex expressions may give rise to performanceis-
sues, particularly when performing operations (such as batch inserts) that affect a great many rows at
onetime.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of par-
titions. That is, the more closely that the expression varies with the value of the column on whichiitis
based, the more efficiently MySQL can use the expression for hash partitioning.

For example, wheredat e_col isacolumn of type DATE, then the expression

TO DAYS(dat e _col ) issaidto vary directly with the value of dat e_col , because for every
changeinthevaue of dat e _col , the value of the expression changesin a consistent manner. The vari-
ance of the expression YEAR( dat e_col ) withrespecttodat e_col isnot quite as direct asthat of
TO DAYS( dat e_col ), because not every possible changein dat e_col produces an equivalent
changein YEAR( dat e_col ). Even so, YEAR( dat e_col ) isagood candidate for a hashing func-
tion, because it varies directly with a portion of dat e_col and thereisno possible changein

dat e_col that produces adisproportionate changein YEAR( dat e _col ).

By way of contrast, suppose that you have acolumn named i nt _col whosetypeis| NT. Now con-
sider the expression PON( 5-i nt _col , 3) + 6. Thiswould be apoor choice for a hashing function
because achangeinthevalueof i nt _col isnot guaranteed to produce a proportional change in the
value of the expression. Changing thevalueof i nt _col by agiven amount can produce by widely dif-
ferent changes in the value of the expression. For example, changingi nt _col from5 to 6 produces a
change of - 1 in the value of the expression, but changing the value of i nt _col from 6 to 7 produces a
change of - 7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression fol-
lows a straight line as traced by the equation y=nx where n is some nonzero constant, the better the ex-
pression is suited to hashing. This has to do with the fact that the more nonlinear an expression is, the
more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but determin-
ing which of such expressions are suitable can be quite difficult and time-consuming. For this reason,
the use of hashing expressions involving multiple columnsis not particularly recommended.

When PARTI TI ON BY HASH s used, MySQL determines which partition of numpartitionsto use
based on the modulus of the result of the user function. In other words, for an expression expr , the par-
tition in which the record is stored is partition number N, where N = MOD( expr, nunj . For ex-
ample, supposetablet 1 isdefined asfollows, so that it has 4 partitions:

CREATE TABLE t1 (col1l INT, col2 CHAR(5), col 3 DATE)
PARTI TI ON BY HASH( YEAR(col 3) )
PARTI TI ONS 4;

If youinsert arecordintot 1 whosecol 3 valueis' 2005- 09- 15" , then the partition in which it is
stored is determined as follows:

MOD( YEAR( ' 2005- 09- 01' ), 4)
MOD( 2005, 4)
1

MySQL 5.1 also supports a variant of HASH partitioning known as linear hashing which employs a

13



Partition Types

more complex algorithm for determining the placement of new rows inserted into the partitioned table.
See Section 3.3.1, “LI NEAR HASH Partitioning”, for a description of this algorithm.

The user function is evaluated each time arecord isinserted or updated. It may also — depending on the
circumstances — be evaluated when records are del eted.

Note: If the table to be partitioned has a UNI QUE key, then any columns supplied as arguments to the
HASH user function or tothe KEY'scol unm_I i st must be part of that key. Exception: Thisrestric-
tion does not apply to tables using the NDBCl ust er storage engine.

3.3.1. LI NEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntacticaly, the only difference between linear-hash partitioning and regular hashing is the addition of
the L1 NEAR keyword in the PARTI TI ON BY clause, as shown here:

CREATE TABLE enpl oyees (
id I NT NOT NULL,
f name VARCHAR( 30),
| name VARCHAR( 30),
hi red DATE NOT NULL DEFAULT ' 1970-01-01',
separ at ed DATE NOT NULL DEFAULT '9999-12-31',
j ob_code | NT,
store_id I NT

)
PARTI TI ON BY LI NEAR HASH( YEAR(hired) )
PARTI TI ONS 4;

Given an expression expr , the partition in which the record is stored when linear hashing is used is par-
tition number N from among numpartitions, where N is derived according to the following algorithm:

1. Findthe next power of 2 greater than num We call thisvalue V; it can be calculated as:
V = POAER(2, CEILING(LOZ2, num)))

(For example, suppose that numis 13. Then LOG( 2, 13) is3.7004397181411. CEIl L-
I NG( 3. 7004397181411) is4, and V= POAER( 2, 4) , whichis 16.)

2. SetN=F(colum_list)& (V-1).
3. WhileN>=num

* SetV=CEIL(V/2)

e SetN=N& (V-1)

For example, suppose that thetablet 1, using linear hash partitioning and having 6 partitions, is created
using this statement:

CREATE TABLE t1 (col1 INT, col 2 CHAR(5), col3 DATE)
PARTI TI ON BY LI NEAR HASH( YEAR(col 3) )
PARTI TI ONS 6;

Now assume that you want to insert two recordsinto t 1 having the col 3 column values
' 2003- 04- 14" and' 1998- 10- 19' . The partition number for the first of these is determined as fol-
lows:

14



Partition Types

V = POMNER(2, CEILING LOX2,7) )) =8
N = YEAR('2003-04-14") & (8 - 1)

= 2003 & 7

=3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V=8
N = YEAR(' 1998-10-19') & (8-1)
= 1998 & 7

6
(6 >= 6 is TRUE: additional step required)
6 & CEILING5 / 2)

6 & 3
2

N

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of parti-
tionsis made much faster, which can be beneficial when dealing with tables containing extremely large
amounts (terabytes) of data. The disadvantage isthat dataislesslikely to be evenly distributed between
partitions as compared with the distribution obtained using regular hash partitioning.

3.4. KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a
user-defined expression, the hashing function for key partitioning is supplied by the MySQL server.
MySQL Cluster uses VD5( ) for this purpose; for tables using other storage engines, the server employs
its own internal hashing function which is based on the same algorithm as PASSWORDY ) .

The syntax rulesfor CREATE TABLE ... PARTI TI ON BY KEY aresimilar to those for creating a
table that is partitioned by hash. The major differences are that:

* KEY isused rather than HASH.

» KEY takesonly alist of one or more column names. Beginning with MySQL 5.1.5, the column or
columns used as the partitioning key must comprise part or all of the table's primary key, if the table
has one.

Beginning with MySQL 5.1.6, KEY takes alist of zero or more column names. Where no column
name is specified as the partitioning key, the table's primary key isused, if there is one. For example,
the following CREATE TABLE statement isvalid in MySQL 5.1.6 or later:

CREATE TABLE k1 (
id INT NOT NULL PRI MARY KEY,
nanme VARCHAR( 20)

PARTI TI ON BY KEY()
PARTI TI ONS 2;

If thereis no primary key but there is a unique key, then the unique key is used for the partitioning
key:
CREATE TABLE k1 (

id INT NOT NULL,

name VARCHAR( 20),
UNI QUE KEY (i d)

)
PARTI TI ON BY KEY()

15



Partition Types

PARTI TI ONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement
would fail.

In both of these cases, the partitioning key isthe i d column, even though it is not shown in the out-
put of SHON CREATE TABLE or inthe PARTI TI ON_EXPRESSI ON column of the | NFORIVA-
TI ON_SCHENA. PARTI TI ONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted
tointeger or NULL values. For example, the following CREATE TABLE statement isvalid:

CREATE TABLE tnil (
sl CHAR(32) PRI MARY KEY

)
PARTI TI ON BY KEY(s1)
PARTI TI ONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (Note:
In this case, smply using PARTI TI ON BY KEY() would also be valid and have the same effect as
PARTI TI ON BY KEY(sl),sincesl isthetable's primary key.)

For additional information about this issue, see Chapter 6, Restrictions and Limitations on Partition-
ing.

Note: Also beginning with MySQL 5.1.6, tablesusing the NDB Cl ust er storage engine are impli-
citly partitioned by KEY, again using the tabl€e's primary key as the partitioning key. In the event that
the Cluster table has no explicit primary key, the “hidden” primary key generated by the NDB storage
engine for each Cluster table is used as the partitioning key.

Important: For akey-partitioned table using any MySQL storage engine other than NDB

Cl ust er, you cannot executean ALTER TABLE DROP PRI MARY KEY, asdoing so generates
the error ERROR 1466 (HY 000): Field in list of fields for partition function not found in table. This
isnot an issue for MySQL Cluster tables which are partitioned by KEY; in such cases, the tableisre-
organized using the “hidden” primary key as the table's new partitioning key. See MySQL Cluster
[http://dev.mysgl.com/doc/ref man/5.1/en/mysql-cluster.html].

It isalso possible to partition atable by linear key. Here is asimple example:

CREATE TABLE tk (
col 1 | NT NOT NULL,
col 2 CHAR(5),
col 3 DATE

)
PARTI TI ON BY LI NEAR KEY (col 1)
PARTI TI ONS 3;

Using LI NEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the parti-
tion number being derived using a powers-of-two algorithm rather than modulo arithmetic. See Sec-
tion 3.3.1, “L1 NEAR HASH Partitioning”, for a description of this algorithm and its implications.

3.5. Subpartitioning

Subpartitioning — also known as composite partitioning — is the further division of each partitionin a
partitioned table. For example, consider the following CREATE TABLE statement:

CREATE TABLE ts (id | NT, purchased DATE)
PARTI TI ON BY RANGE( YEAR(purchased) )

16


http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html

Partition Types

SUBPARTI TI ON BY HASH( TO_DAYS( pur chased) )
SUBPARTI TI ONS 2 (
PARTI TI ON pO VALUES LESS THAN (1990),
PARTI TI ON p1 VALUES LESS THAN (2000),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE

Tablet s has 3 RANGE partitions. Each of these partitions— p0, p1, and p2 — isfurther divided into 2
subpartitions. In effect, the entire tableis divided into 3 * 2 = 6 partitions. However, due to the ac-
tion of the PARTI TI ON BY RANGE clause, the first 2 of these store only those records with avalue
less than 1990 in the pur chased column.

In MySQL 5.1, it is possible to subpartition tables that are partitioned by RANGE or LI ST. Subpartitions
may use either HASH or KEY partitioning. Thisis also known as composite partitioning.

It is also possible to define subpartitions explicitly using SUBPARTI TI ON clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the sametablet s as shownin
the previous example would be:

CREATE TABLE ts (id |INT, purchased DATE)
PARTI TI ON BY RANGE( YEAR(purchased) )
SUBPARTI TI ON BY HASH( TO DAYS( purchased) ) (
PARTI TI ON pO0 VALUES LESS THAN (1990) (
SUBPARTI TI ON sO,
SUBPARTI TI ON s1

)

PARTI TI ON p1 VALUES LESS THAN (2000) (
SUBPARTI TI ON s2,
SUBPARTI Tl ON s3

)

PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI TI ON s4,
SUBPARTI Tl ON s5

Some syntactical items of note:

» Each partition must have the same number of subpartitions.

» If you explicitly define any subpartitions using SUBPARTI Tl ON on any partition of a partitioned ta-
ble, you must define them all. In other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE( YEAR(purchased) )
SUBPARTI TI ON BY HASH( TO DAYS( pur chased) ) (
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI TI ON sO,
SUBPARTI Tl ON s1

R
PARTI TI ON p1 VALUES LESS THAN (2000),
PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s2,
SUBPARTI TI ON s3

)

This statement would still fail even if it included a SUBPARTI TI ONS 2 clause.

e Each SUBPARTI TI ON clause must include (at a minimum) aname for the subpartition. Otherwise,
you may set any desired option for the subpartition or allow it to assume its default setting for that
option.

* InMySQL 5.1.7 and earlier, names of subpartitions must be unique within each partition, but do not
have to be unique within the table as a whole. Beginning with MySQL 5.1.8, subpartition names

17



Partition Types

must be unique across the entire table. For example, the following CREATE TABLE statement is
valid in MySQL 5.1.8 and later:

CREATE TABLE ts (id INT, purchased DATE)
PARTI TI ON BY RANGE( YEAR( purchased) )
SUBPARTI TI ON BY HASH( TO DAYS( pur chased) ) (
PARTI TI ON pO VALUES LESS THAN (1990) (
SUBPARTI Tl ON sO,
SUBPARTI TI ON s1

0

PARTI TI ON p1 VALUES LESS THAN (2000) (
SUBPARTI TI ON s2,
SUBPARTI TI ON s3

B

PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s4,
SUBPARTI Tl ON s5

(The previous statement is also valid for versions of MySQL prior t0 5.1.8.)

Subpartitions can be used with especially large tables to distribute data and indexes across many disks.
Suppose that you have 6 disks mounted as/ di sk0,/ di sk1,/ di sk2, and so on. Now consider the
following example:

CREATE TABLE ts (id |INT, purchased DATE)
PARTI TI ON BY RANGE( YEAR(purchased) )
SUBPARTI TI ON BY HASH( TO DAYS(purchased) ) (
PARTI TI ON p0 VALUES LESS THAN (1990) (
SUBPARTI TI ON sO
DATA DI RECTORY = '/di sk0/ dat a'
| NDEX DI RECTORY = '/di skO/idx',
SUBPARTI Tl ON s1
DATA DI RECTORY = '/di skl/ dat a'
| NDEX DI RECTORY = '/di sk1/i dx'

)
PARTI TI ON p1 VALUES LESS THAN (2000) (
SUBPARTI Tl ON s2
DATA DI RECTORY = '/ di sk2/ dat a'
I NDEX DI RECTORY = '/ di sk2/i dx',
SUBPARTI Tl ON s3
DATA DI RECTORY = '/ di sk3/ dat a'
I NDEX DI RECTORY = '/ di sk3/i dx'

)
PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI Tl ON s4
DATA DI RECTORY = '/di sk4/dat a'
| NDEX DI RECTORY = '/di sk4/idx',
SUBPARTI Tl ON s5
DATA DI RECTORY = '/di sk5/ dat a'
I NDEX DI RECTORY = ' /di sk5/i dx’

)
)

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other vari-
ations are possible; another example might be:

CREATE TABLE ts (id |INT, purchased DATE)
PARTI TI ON BY RANGE( YEAR( pur chased))
SUBPARTI TI ON BY HASH( TO DAYS( purchased) ) (
PARTI TI ON p0 VALUES LESS THAN (1990) (
SUBPARTI Tl ON sOa
DATA DI RECTORY = '/di skO'
I NDEX DI RECTORY = '/diskl',
SUBPARTI TI ON s0b
DATA DI RECTORY = '/di sk2'
| NDEX DI RECTORY = '/di sk3'

)
PARTI TI ON p1 VALUES LESS THAN (2000) (
SUBPARTI TI ON sla
DATA DI RECTCRY = '/ di sk4/ dat a'

18



Partition Types

| NDEX DI RECTORY = '/di sk4/idx",
SUBPARTI TI ON s1b

DATA DI RECTORY = '/ di sk5/ dat a'

I NDEX DI RECTORY = '/di sk5/i dx'

)

PARTI TI ON p2 VALUES LESS THAN MAXVALUE (
SUBPARTI TI ON s2a,
SUBPARTI Tl ON s2b

)
)

Here, the storage is asfollows:

* Rowswith pur chased dates from before 1990 take up a vast amount of space, so are split up 4
ways, with a separate disk dedicated to the data and to the indexes for each of the two subpartitions
(sOa and s0b) making up partition p0. In other words:

e Thedatafor subpartition sOa isstored on/ di skO.
* Theindexesfor subpartition sOa are stored on/ di sk1.
e Thedatafor subpartition sOb isstored on/ di sk2.
* Theindexesfor subpartition sOb are stored on/ di sk3.

» Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as
those from before 1990. These are split between 2 disks (/ di sk4 and/ di sk5) rather than 4 disks
as with the legacy records stored in pO:

« Dataand indexes belonging to p1'sfirst subpartition (s1a) are stored on/ di sk4 — the datain
/ di sk4/ dat a, and theindexesin/ di sk4/i dx.

« Dataand indexes belonging to p1's second subpartition (s 1b) are stored on/ di sk5 — the data
in/ di sk5/ dat a, and theindexesin/ di sk5/ i dx.

» Rowsreflecting dates from the year 2000 to the present (partition p2) do not take up as much space
asrequired by either of the two previous ranges. Currently, it is sufficient to store al of these in the
default location.

In future, when the number of purchases for the decade beginning with the year 2000 growsto a
point where the default location no longer provides sufficient space, the corresponding rows can be
moved using an ALTER TABLE ... REORGAN ZE PARTI Tl ON statement. See Chapter 4,
Partition Management, for an explanation of how this can be done.

3.6. How MySQL Partitioning Handles NULL Values

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether
it isacolumn value or the value of a user-supplied expression. Even though it is permitted to use NULL
as the value of an expression that must otherwise yield an integer, it is important to keep in mind that
NULL is not anumber. Beginning version 5.1.8, MySQL Partitioning treats NULL as being less than any
non-NULL value, just as ORDER BY does.

Because of this, this treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discussin this
section how each MySQL partitioning types handles NULL values when determining the partition in
which arow should be stored, and provide examples for each.

If you insert arow into atable partitioned by RANGE such that the column value used to determine the

19



Partition Types

partition is NULL, the row isinserted into the lowest partition. For example, consider these two tables,
created and populated as follows:

nysqgl > CREATE TABLE t1 (

-> cl | NT,

-> c2 VARCHAR( 20)

-> )

-> PARTI TI ON BY RANGE(c1) (

-> PARTI TI ON pO VALUES LESS THAN (0),

-> PARTI TI ON pl1 VALUES LESS THAN ( 10),

-> PARTI TI ON p2 VALUES LESS THAN MAXVALUE

= = ;
Query OK, 0 rows affected (0.09 sec)

nysql > CREATE TABLE t1 (
-> cl INT,

-> c2 VARCHAR( 20)

-> )

-> PARTI TI ON BY RANGE(cl) (

-> PARTI TI ON p0 VALUES LESS THAN (-5),

-> PARTI TI ON p1 VALUES LESS THAN (0),

-> PARTI TI ON p1 VALUES LESS THAN ( 10),

-> PARTI TI ON p2 VALUES LESS THAN MAXVALUE

-> )’
Query OK, 0 rows affected (0.09 sec)

mysqgl > I NSERT INTO t1 VALUES (NULL, 'nothra');
Query OK, 1 row affected (0.00 sec)

nysql > | NSERT I NTO t2 VALUES (NULL, 'nothra');
Query OK, 1 row affected (0.00 sec)

nysqgl > SELECT * FROM t 1;

[ Hommeaa - +
| id | nane |
dhm o= =oa drmococo=o +
| NULL | nothra |
+------ o - - oo +

1 rowin set (0.00 sec)

nysqgl > SELECT * FROMt 2;

[ Fommmem - +
| id | nane |
qhm o= == dhmococo=o +
| NULL | nmothra |
Ao coooo oo ooooo +

1 rowin set (0.00 sec)

Y ou can see which partitions the rows are stored in by inspecting the filesystem and comparing the sizes
of the. MYDfiles correpsonding to the partitions:

[var/libl/mysqgl/test>1s -1 *.MYD
-rwrw--- 1 mysqgl mysgl 20 2006- 03-10 03: 27 t 1#P#p0. MYD
STWEW-- - nysqgl nysql 2006- 03-10 03: 17 t 1#P#pl. M\YD

0
1 0
-rwrw--- 1 nmysqgl nysgl 0 2006-03-10 03: 17 t1#P#p2. MYD
-rwrw--- 1 nmysqgl nmysqgl 20 2006- 03-10 03: 27 t 2#P#p0. MYD
-rwrw--- 1 nysgl nysgl 0 2006-03-10 03: 17 t2#P#pl. MYD
-rwrw--- 1 nysgl nysgl 0 2006-03-10 03: 17 t 2#P#p2. MYD
-rwrw--- 1 nysqgl nysgl 0O 2006-03-10 03: 17 t2#P#p3. M\YD

(Partition files are named according to the format t abl e _nane#P#partiti on_nane. ext en-
si on, sothatt 1#P#p0. MYDisthefile in which data belonging to partition pO of tablet 1 is stored.
Note: Prior to MySQL 5.1.5, these fileswould have beennamedt 1_p0O. MyDandt 2_p0. MYD, re-
spectively. See Changesin release 5.1.6 (01 February 2006)
[http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html] and Bug#13437
[http://bugs.mysql.com/13437] for information regarding how this change impacts upgrades.)

Y ou can aso demonstrate that these rows were stored in the lowest partition of the each table by drop-
ping these partitions, and then re-running the SELECT statements:

mysql > ALTER TABLE t1 DROP PARTI Tl ON pO;
Query OK, 0 rows affected (0.16 sec)

20


http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html
http://bugs.mysql.com/13437

Partition Types

nysqgl > ALTER TABLE t2 DROP PARTI Tl ON pO;
Query OK, 0 rows affected (0.16 sec)

nysql > SELECT * FROM t 1;
Enpty set (0.00 sec)

nysqgl > SELECT * FROMt 2;
Enpty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTI Tl ON, see Section 7.2, “Partitioning
Extnesionsto the ALTER TABLE Statement”.)

Such treatment also holds true for partitioning expressions that use SQL functions. Suppose that we have
atable such as this one:

CREATE TABLE tndate (
id |NT,
dt DATE

)

PARTI TI ON BY RANGE( YEAR(dt) ) (
PARTI TI ON p0 VALUES LESS THAN (1990),
PARTI TI ON p1 VALUES LESS THAN (2000)
PARTI TI ON p2 VALUES LESS THAN MAXVALUE

Aswith other MySQL functions, YEAR( NULL) returns NULL. A row with adt column value of NULL
is treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition pO.

A table that is partitioned by L1 ST admits NULL valuesif and only if one of its partitionsis defined us-
ing that value-list that contains NULL. The converse of thisisthat atable partitioned by LI ST which
does not explicitly use NULL in avalue list rejects rows resulting in a NULL value for the partitioning
expression, as shown in this example:

nysql > CREATE TABLE tsi (
-> cl INT,

S c2 VARCHAR( 20)

-> )

-> PARTI TI ON BY LIST(c1) (

-> PARTI TI ON pO VALUES IN (0, 3, 6),
o> PARTI TI ON p1 VALUES IN (1, 4, 7),
-> PARTI TI ON p2 VALUES IN (2, 5, 8)
-> )

Query OK, 0 rows affected (0.01 sec)

nysqgl > | NSERT | NTO ts1 VALUES (9, 'nothra');
ERROR 1504 (HYO000): Table has no partition for value 9

nysql > | NSERT INTO ts1 VALUES (NULL, 'nmothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having ac 1 value between 0 and 8 inclusive can beinserted intot s1. NULL falls outside
thisrange, just like the number 9. We can create tablest s2 and t s3 having value lists containing
NULL, as shown here:

nysal > CREATE TABLE ts2 (
cl INT,

o> ) c2 VARCHAR( 20)

->

-> PARTI TI ON BY LIST(c1) (

-> PARTI TION pO VALUES IN (0, 3, 6),
> PARTI TI ON pl VALUES IN (1, 4, 7),
o> PARTI TI ON p2 VALUES IN (2, 5. 8),
o> PARTI TI ON p3 VALUES I N ( NULL)

)
QJery G< 0 rows affected (0.01 sec)

nysql > CREATE TABLE ts3 (
-> cl INT,

-> c2 VARCHAR( 20)

-> )

21



Partition Types

-> PARTI TI ON BY LIST(cl) (

o> PARTI TION pO VALUES IN (0, 3, 6),
o> PARTI TI ON pl VALUES IN (1, 4, 7, NULL),
-> PARTI TION p2 VALUES IN (2, 5, 8)

== ));
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can treat NULL just as you would any other value, and so
VALUES I N (NULL) and VALUES IN (1, 4, 7, NULL) arebothvalid (asare VALUES | N
(1, NOULL, 4, 7),VALUES IN (NULL, 1, 4, 7),andsoon).Youcaninsertarow having
NULL for column c 1 into each of thetablest s2 and t s3:

nysql > | NSERT I NTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

nysqgl > | NSERT | NTO ts3 VALUES (NULL, 'nothra');
Query OK, 1 row affected (0.00 sec)

By inspecting the filesystem, you can verify that the first of these statements inserted a new row into
partition p3 of tablet s2, and that the second statement inserted anew row into partition p1 of table
ts3:

/var/lib/nysqgl/test> |s -1 ts2*. M\YD

-rwrw--- 1 nysqgl nmysgl 0 2006-03-10 10: 35 ts2#P#p0. MYD
-rwrw--- 1 nysgl nysgl 0 2006-03-10 10: 35 t s2#P#pl. MYD
-rwrw--- 1 nysgl nysgl 0 2006-03-10 10: 35 t s2#P#p2. MYD
-rwrw--- 1 nysqgl nmysqgl 20 2006-03-10 10: 35 ts2#P#p3. MYD
/var/lib/nysqgl/test> |s -1 ts3*. M\YD

-rwrw--- 1 nmysgl nmysgl 0 2006-03-10 10: 36 ts3#P#p0. MYD
-rwrw--- 1 nmysqgl nysqgl 20 2006- 03-10 10: 36 ts3#P#pl. MYD
-rwrw--- 1 nysqgl nmysqgl 0 2006-03-10 10: 36 ts3#P#p2. MvD

Asin earlier examples, we assume the use of the bash shell on a Unix operating system for listing files;
use whatever your platform providesin this regard. For example, if you are using a DOS shell on aWin-
dows operating system, the equivalent for the last listing might be obtained by running the command
dir ts3*. MyDinthedirectory C: \ Program Fi | es\ MySQ.\ MySQL Ser ver

5.1\ data\test.

As shown earlier in this section, you can also verify which partitions were used for storing the values by
deleting them and then performing a SELECT.

NULL is handled somewhat differently for tables partitioned by HASH or KEY. In these cases, any parti-
tion expression that yields aNULL valueistreated as though its return value were zero. We can verify
this behavior by examining the effects on the filesystem of creating a table partitioned by HASH and
populating it with arecord containing appropriate values. Suppose that you have atablet h, created in
thet est database, using this statement:

mysql > CREATE TABLE th (
-> cl | NT,
-> c2 VARCHAR( 20)
-> )
-> PARTI TI ON BY HASH(c1)
-> PARTI TI ONS 2;
Query OK, 0 rows affected (0.00 sec)

Assuming an RPM installation of MySQL on Linux, this statement createstwo . MYDfilesin/
var/lib/ mysql/test,whichcanbeviewedinthebash shell asfollows:

/var/lib/nysqgl/test> |s th*. MYD -|
-rwrw--- 1 nysgl nmysgl 0 2005-11-04 18: 41 th#P#p0. MYD
-rwrw--- 1 nysqgl nysgl 0 2005-11-04 18: 41 th#P#pl. MYD

Note that the size of each file is 0 bytes. Now insert arow intot h whose ¢ 1 column valueisNULL, and

22



Partition Types

verify that this row was inserted:

nysqgl > | NSERT | NTO th VALUES (NULL, 'nothra');
Query OK, 1 row affected (0.00 sec)

nysql > SELECT * FROM t h;
dhm o= == dhmozoocoas +
| c1 | c2 |
+o-oo-- S +

| NULL | nothra |
hmo=oo doocoso== +

1 rowin set (0.01 sec)

Recall that for any integer N, the value of NULL MOD Nisalways NULL. For tables that are partitioned
by HASH or KEY, thisresult is treated for determining the correct partition as 0. Returning to the system
shell (still assuming bash for this purpose), we can see that the value was inserted into the first partition
(named pO by default) by listing the data files once again:

var/lib/nysql/test> s *. \MD -|
-rwrw--- 1 nysgl nysgl 20 2005-11- 04 18: 44 t h#P#p0. MYD
-rwrw--- 1 nysgl nysgl 0 2005-11-04 18: 41 th#P#pl. MYD

Y ou can see that the | NSERT statement modified only thefilet h#P#p0. MyD (increasing its size on
disk), without affecting the other datafile.

Important: Prior to MySQL 5.1.8, RANGE partitioning treated a partitioning expression value of NULL
as a zero with respect to determining placement (the only way to circumvent this was to design tables so
as not to allow nulls, usually by declaring columns NOT NULL). If you have a RANGE partitioning
scheme that depends on this earlier behavior, you will need to re-implement it when upgrading to
MySQL 5.1.8 or later.

23



Chapter 4. Partition Management

MySQL 5.1 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine,
merge, or split existing partitions. All of these actions can be carried out using the partitioning exten-
sionsto the ALTER TABLE command (see Section 7.2, “Partitioning Extnesionsto the ALTER TABLE
Statement”, for syntax definitions). There are also ways to obtain information about partitioned tables
and partitions. We discuss these topics in the sections that follow.

» For information about partition management in tables partitioned by RANGE or LI ST, see Sec-
tion 4.1, “Management of RANGE and LI ST Partitions’.

» For adiscussion of managing HASH and KEY partitions, see Section 4.2, “Management of HASH and
KEY Partitions”.

»  See Section 4.4, “Obtaining Information About Partitions’, for a discussion of mechanisms provided
in MySQL 5.1 for obtaining information about partitioned tables and partitions.

» For adiscussion of performing maintenance operations on partitions, see Section 4.3, “Maintenance
of Partitions’.

Not e: In MySQL 5.1, all partitions of a partitioned table must have the same number of subpartitions,
and it is not possible to change the subpartitioning once the table has been created.

The statement ALTER TABLE ... PARTITION BY ... isavailableandisfunctional beginning
with MySQL 5.1.6; previously in MySQL 5.1, this was accepted as valid syntax, but the statement did
nothing.

To change atable's partitioning scheme, it is necessary only to usethe ALTER TABLE command with a
partition_options clause. This clause hasthe same syntax as that as used with CREATE TABLE
for creating a partitioned table, and always begins with the keywords PARTI TI ON BY. For example,
suppose that you have a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
PARTI TI ON BY RANGE( YEAR(purchased) ) (
PARTI TI ON pO VALUES LESS THAN (1990),
PARTI TI ON p1 VALUES LESS THAN (1995),
PARTI TI ON p2 VALUES LESS THAN (2000),
PARTI TI ON p3 VALUES LESS THAN (2005)

To repartition thistable so that it is partitioned by key into two partitions using thei d column value as
the basis for the key, you can use this statement:

ALTER TABLE trb3 PARTI TI ON BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using CRE-
ATE TABLE trb3 PARTI TI ON BY KEY(id) PARTITIONS 2;.

Important: In MySQL 5.1.7 and earlier MySQL 5.1 releases, ALTER TABLE ... ENG NE = ...
removed al partitioning from the affected table. Beginning with MySQL 5.1.8, this statement changes
only the storage engine used by the table, and |eaves the tabl€e's partitioning scheme intact. As of
MySQL 5.1.8, use ALTER TABLE ... REMOVE PARTI TI ONI NGto remove atable's partitioning.
See Section 7.2, “Partitioning Extnesionsto the ALTER TABLE Statement”.

4.1. Management of RANGE and LI ST Partitions

24



Partition Management

Range and list partitions are very similar with regard to how the adding and dropping of partitions are
handled. For this reason we discuss the management of both sorts of partitioning in this section. For in-
formation about working with tables that are partitioned by hash or key, see Section 4.2, “Management
of HASH and KEY Partitions’. Dropping a RANGE or LI ST partition is more straightforward than adding
one, so we discuss thisfirst.

Dropping a partition from atable that is partitioned by either RANGE or by LI ST can be accomplished
using the ALTER TABLE statement with aDROP PARTI Tl ON clause. Hereis avery basic example,
which supposes that you have already created a table which is partitioned by range and then popul ated
with 10 records using the following CREATE TABLE and | NSERT statements:

nysqgl > CREATE TABLE tr (id |INT, nane VARCHAR(50), purchased DATE)

-> PARTI TI ON BY RANGE( YEAR(purchased) ) (

-> PARTI TI ON pO VALUES LESS THAN (1990),
-> PARTI TI ON p1 VALUES LESS THAN (1995),
-> PARTI TI ON p2 VALUES LESS THAN (2000),

-> PARTI TI ON p3 VALUES LESS THAN (2005)
-> ) ;
Query OK, 0 rows affected (0.01 sec)

nysql > | NSERT | NTO tr VALUES
-> (1, 'desk organiser', '2003-10-15"),
'CD player', '1993-11-05"),
"TV set', '1996-03-10'),
' bookcase', '1982-01-10"),
' exerci se bike', '2004-05-09"),
'sofa', '1987-06-05"),
' popcorn nmaeker', '2001-11-22'),
"aquariunm, '1992-08-04"),
, 'study desk', '1984-09-16'),
0, 'lava lanp', '1998-12-25");
rows affected (0.01 sec)

CIRNICOIICIS

(
(
(
(
(
-> (
(
E
Query OK, 10

Y ou can see which items should have been inserted into partition p2 as shown here:

nmysql > SELECT * FROM tr
-> WHERE purchased BETWEEN ' 1995-01-01' AND '1999-12-31';
A

doocooo dooccocoocococodtoococcooooo +
| id | nane | purchased |
+oeoo-- . emeeeea +
| 3| TV set | 1996-03-10 |
| 10 | lava lanp | 1998-12-25 |
Femmm- - oo oo +

2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

nysqgl > ALTER TABLE tr DROP PARTI Tl ON p2;
Query OK, 0 rows affected (0.03 sec)

Note: In MySQL 5.1, the NDB Cl ust er storage engine does not support ALTER TABLE . ..
DROP PARTI TI ON. It does, however, support the other partitioning-related extensionsto ALTER TA-
BLE that are described in this chapter.

It isvery important to remember that, when you drop a partition, you also delete all the data that was
stored in that partition. Y ou can see that thisis the case by re-running the previous SELECT query:

mysql > SELECT * FROM tr WHERE pur chased

-> BETWEEN ' 1995-01-01" AND ' 1999-12-31';
Enpty set (0.00 sec)

Because of this, the requirement was added in MySQL 5.1.10 that you have the DROP privilege for ata-
ble before you can execute ALTER TABLE ... DROP PARTI Tl ON on that table.

If you wish to drop all datafrom all partitions while preserving the table definition and its partitioning

25



Partition Management

scheme, use the TRUNCATE TABLE command. (See TRUNCATE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/truncate.html].)

If you intend to change the partitioning of atable without losing data, use ALTER TABLE ... RE-
ORGANI ZE PARTI Tl ONinstead. See below or in Section 7.2, “ Partitioning Extnesions to the ALTER
TABLE Statement”, for information about REORGANI ZE PARTI Tl ON.

If you now execute a SHOWN CREATE TABLE command, you can see how the partitioning makeup of
the table has been changed:

nysqgl > SHOW CREATE TABLE tr\G
khkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkkkkkkkx* 1 r ow khkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkkhkhkkkkkkkx*
Table: tr
Create Tabl e: CREATE TABLE “tr° (
“id int(11) default NULL,
“nane’ varchar (50) default NULL,
“purchased’ date default NULL
) ENG NE=My| SAM DEFAULT CHARSET=| ati nl
PARTI TI ON BY RANGE ( YEAR(purchased) ) (

PARTI TI ON p0 VALUES LESS THAN (1990) ENA NE = Myl SAM
PARTI TI ON p1 VALUES LESS THAN (1995) ENA NE = Myl SAM
PARTI TI ON p3 VALUES LESS THAN (2005) ENA NE = Myl SAM

1 rowin set (0.01 sec)

When you insert new rows into the changed table with pur chased column values between
'1995-01- 01" and' 2004- 12- 31" inclusive, those rows will be stored in partition p3. You can
verify thisasfollows:

mysql > | NSERT | NTO tr VALUES (11, 'pencil holder', '1995-07-12");
Query OK, 1 row affected (0.00 sec)

nysqgl > SELECT * FROM tr WHERE purchased
-> BETWEEN ' 1995-01-01' AND ' 2004-12-31';

! !

| pencil holder | 1995-07-12 |
| desk organiser | 2003-10-15 |
| exercise bike | 2004-05-09 |
| popcorn neker | 2001-11-22 |
+ +
i

nmysql > ALTER TABLE tr DROP PARTI Tl ON p3;
Query OK, 0 rows affected (0.03 sec)

nysqgl > SELECT * FROM tr WHERE pur chased
-> BETWEEN ' 1995-01-01' AND ' 2004-12-31';
Enpty set (0.00 sec)

Note that the number of rows dropped from the table asaresult of ALTER TABLE ... DROP PAR-
TI TI ONis not reported by the server asit would be by the equivalent DELETE query.

Dropping LI ST partitions uses exactly the same ALTER TABLE ... DROP PARTI Tl ONsyntax as
used for dropping RANCE partitions. However, there is one important difference in the effect this has on
your use of the table afterward: Y ou can no longer insert into the table any rows having any of the val-
ues that were included in the value list defining the deleted partition. (See Section 3.2, “LI ST Partition-
ing”, for an example.)

To add anew range or list partition to a previously partitioned table, usethe ALTER TABLE . ..

ADD PARTI Tl ON statement. For tables which are partitioned by RANGE, this can be used to add a new
range to the end of thelist of existing partitions. For example, suppose that you have a partitioned table
containing membership data for your organisation, which is defined as follows:

CREATE TABLE nenbers (
id |NT,
f name VARCHAR( 25) ,

26


http://dev.mysql.com/doc/refman/5.1/en/truncate.html

Partition Management

| name VARCHAR( 25) ,
dob DATE

)

PARTI TI ON BY RANGE( YEAR(dob) ) (
PARTI TI ON p0 VALUES LESS THAN (1970),
PARTI TI ON p1 VALUES LESS THAN (1980),
PARTI TI ON p2 VALUES LESS THAN (1990)

Suppose further that the minimum age for membersis 16. As the calendar approaches the end of 2005,
you realize that you will soon be admitting members who were born in 1990 (and later in years to
come). You can modify the nenber s table to accommodate new members born in the years 1990-1999
as shown here:

ALTER TABLE ADD PARTI TI ON ( PARTI TI ON p3 VALUES LESS THAN (2000));

Important: With tables that are partitioned by range, you can use ADD PARTI TI ONto add new parti-
tionsto the high end of the partitions list only. Trying to add a new partition in this manner between or
before existing partitions will result in an error as shown here;

nmysql > ALTER TABLE nenber s
> ADD PARTI TI ON (
> PARTI TI ON p3 VALUES LESS THAN (1960));
ERROR 1463 (HY000): VALUES LESS THAN val ue nmust be strictly »
increasing for each partition

In asimilar fashion, you can add new partitions to atable that is partitioned by LI ST. For example, giv-
en atable defined like so:

CREATE TABLE tt (
id | NT,
data | NT

)

PARTI TI ON BY LI ST(data) (
PARTI TI ON pO VALUES |

[

N (5, 10, 15),
PARTI TI ON p1 VALUES IN (6

12, 18)
)

Y ou can add a new partition in which to store rows having the dat a column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTI TI ON (PARTI TI ON p2 VALUES IN (7, 14, 21));

Note that you cannot add anew LI ST partition encompassing any valuesthat are already included in
the value list of an existing partition. If you attempt to do so, an error will result:

mysql > ALTER TABLE tt ADD PARTI Tl ON
> (PARTI TION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Miltiple definition of sane constant »
in list partitioning

Because any rows with the dat a column value 12 have already been assigned to partition p1, you can-
not create anew partition ontablet t that includes 12 initsvalue list. To accomplish this, you could
drop p1, and add np and then anew p1 with amodified definition. However, as discussed earlier, this
would result in the loss of all datastored in p1 — and it is often the case that thisis not what you really
want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy the datainto it using CREATE TABLE ... SELECT .. .,thendrop theoldtableand
rename the new one, but this could be very time-consuming when dealing with alarge amounts of data.
This also might not be feasible in situations where high availability is a requirement.

Beginning with MySQL 5.1.6, you can add multiple partitionsin asingle ALTER TABLE ... ADD
PARTI Tl ON statement as shown here:

27



Partition Management

CREATE TABLE enpl oyees (
id INT NOT NULL,
fname VARCHAR(50) NOT NULL,
| name VARCHAR(50) NOT NULL,
hi red DATE NOT NULL

)

PARTI TI ON BY RANGE( YEAR(hired) ) (
PARTI TI ON pl VALUES LESS THAN (1991),
PARTI TI ON p2 VALUES LESS THAN (1996),
PARTI TI ON p3 VALUES LESS THAN (2001),

: PARTI TI ON p4 VALUES LESS THAN (2005)

ALTER TABLE enpl oyees ADD PARTI TI ON (
PARTI TI ON p5 VALUES LESS THAN (2010),
PARTI TI ON p6 VALUES LESS THAN MAXVALUE

)

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing
data. Let uslook first at a couple of simple examplesinvolving RANGE partitioning. Recall the menm
ber s tablewhich is now defined as shown here:

nysqgl > SHOW CREATE TABLE nenbers\ G
R R R S R O l. I'OW khkkhkkhkhkkhkhkhkhkhkhhkkhhkdhkhkhhkhhkkhhkx*x
Tabl e: nmenbers
Create Tabl e: CREATE TABLE " nenbers” (
“id int(11) default NULL,
“fname’ varchar (25) default NULL,
"I name’ varchar (25) default NULL,
“dob™ date default NULL
) ENG NE=My| SAM DEFAULT CHARSET=| ati nl1
PARTI TI ON BY RANGE ( YEAR(dob) ) (

PARTI TI ON p0 VALUES LESS THAN (1970) ENA NE = Myl SAM
PARTI TI ON pl1 VALUES LESS THAN (1980) ENA NE = Myl SAM
PARTI TI ON p2 VALUES LESS THAN (1990) ENA NE = Myl SAM
PARTI TI ON p3 VALUES LESS THAN (2000) ENG NE = Myl SAM

)

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. Aswe have already seen, this cannot be doneusing ALTER TABLE ... ADD PARTI -

TI ON. However, you can use another partition-related extension to ALTER TABLE in order to accom-
plish this:

ALTER TABLE menbers REORGANI ZE PARTI TI ON p0 | NTO (

PARTI TI ON sO VALUES LESS THAN (1960),
PARTI TI ON s1 VALUES LESS THAN (1970)

B

In effect, this command splits partition pO into two new partitionssO and s 1. It also moves the data
that was stored in pO into the new partitions according to the rules embodied in the two PARTI TI ON
... VALUES ... clauses, sothat sO contains only those records for which YEAR( dob) islessthan
1960 and s 1 contains those rows in which YEAR( dob) is greater than or equal to 1960 but less than
1970.

A REORGANI ZE PARTI TI ON clause may also be used for merging adjacent partitions. Y ou can return
the menber s tableto its previous partitioning as shown here:

ALTER TABLE nenbers REORGAN ZE PARTI TI ON s0, s1 | NTO (
PARTI TI ON p0 VALUES LESS THAN (1970)
E

No dataislost in splitting or merging partitions using REORGANI ZE PARTI Tl ON. In executing the
above statement, MySQL moves all of the records that were stored in partitions sO and s 1 into partition
pO.

The general syntax for REORGANI ZE PARTI Tl ONis:

28



Partition Management

ALTER TABLE t bl _nane
REORGANI ZE PARTI TI ON partition_|ist
I NTO (partition_definitions);

Here, t bl _narme isthe name of the partitioned table, and parti ti on_| i st isacomma-separated
list of names of one or more existing partitionsto be changed. partiti on_definitionsisa
comma-separated list of new partition definitions, which follow the same rules asfor theparti -
tion_definitionslistusedin CREATE TABLE (see Section 7.1, “Partitioning Extensions to
CREATE TABLE"). It should be noted that you are not limited to merging several partitions into one, or
to splitting one partition into many, when using REORGANI ZE PARTI Tl ON. For example, you can re-
organize all four partitions of the menber s table into two, asfollows:

ALTER TABLE nenmbers REORGANI ZE PARTI TI ON pO, p1, p2, p3 | NTO (
PARTI TI ON nD VALUES LESS THAN (1980),
PARTI TI ON nil. VALUES LESS THAN (2000)

)

You can aso use RECRGANI ZE PARTI T1 ONwith tablesthat are partitioned by LI ST. Let usreturn
to the problem of adding a new partition to the list-partitioned t t table and failing because the new par-
tition had a value that was already present in the value-list of one of the existing partitions. We can
handle this by adding a partition that contains only non-conflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved
to the new one:

ALTER TABLE tt ADD PARTI TI ON (P,

ALTER TABLE tt REORGANI ZE PARTI
PARTI TI ON p1 VALUES I N (8,
PARTI TION np VALUES in (4,

ARTI TI ON np VALUES IN (4, 8));
TION p1, np I NTO (

18),
8, 12)

Here are some key pointsto keep in mind whenusing ALTER TABLE ... REORGAN ZE PARTI -
TI ONto repartition tables that are partitioned by RANGE or LI ST:

»  ThePARTI TI ON clauses used to determine the new partitioning scheme are subject to the same
rules as those used with a CREATE TABLE statement.

Most importantly, you should remember that the new partitioning scheme cannot have any overlap-
ping ranges (applies to tables partitioned by RANGE) or sets of values (when reorganizing tables par-
titioned by LI ST).

Note: Prior to MySQL 5.1.4, you could not reuse the names of existing partitionsin the | NTO
clause, even when those partitions were being dropped or redefined. See Changesin release 5.1.4
(21 December 2005) [http://dev.mysgl.com/doc/refman/5.1/en/news-5-1-4.html], for more informa-
tion.

* The combination of partitionsintheparti ti on_defi ni ti ons list should account for the same
range or set of values overall as the combined partitionsnamed inthepartiti on_|i st.

For instance, inthe menber s table used as an examplein this section, partitions p1 and p2 togeth-
er cover the years 1980 through 1999. Therefore, any reorganization of these two partitions should
cover the same range of years overall.

» For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over
range partitions.

For instance, you could not reorganize the menber s table used as an examplein this section using a
statement beginning with ALTER TABLE nenbers REORGANI ZE PARTI TI ON pO, p2 | N
TO . .. because pO coverstheyears prior to 1970 and p2 the years from 1990 through 1999 in-
clusive, and thus the two are not adjacent partitions.

29


http://dev.mysql.com/doc/refman/5.1/en/news-5-1-4.html
http://dev.mysql.com/doc/refman/5.1/en/news-5-1-4.html

Partition Management

* You cannot use REORGANI ZE PARTI Tl ONto change the table's partitioning type; that is, you
cannot (for example) change RANGE partitions to HASH partitions or vice versa. Y ou also cannot use
this command to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTI TI ON BY
... . For example:

ALTER TABLE nenbers
PARTI TI ON BY HASH( YEAR(dob) )
PARTI Tl ONS 8;

4.2. Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been parti-
tioned by range or list. For that reason, this section addresses the modification of tables partitioned by
hash or by key only. For a discussion of adding and dropping of partitions of tables that are partitioned
by range or list, see Section 4.1, “Management of RANGE and LI ST Partitions”.

Y ou cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you
can from tables that are partitioned by RANGE or LI ST. However, you can merge HASH or KEY parti-
tionsusingthe ALTER TABLE ... COALESCE PARTI TI ONcommand. For example, suppose that
you have atable containing data about clients, which is divided into twelve partitions. Thecl i ent s ta
ble is defined as shown here:

CREATE TABLE clients (
id I NT,
f name VARCHAR( 30) ,
| name VARCHAR( 30) ,
si gned DATE

)
PARTI TI ON BY HASH( MONTH(si gned) )
PARTI TI ONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE com-
mand:

mysql > ALTER TABLE clients COALESCE PARTI TI ON 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LI NEAR HASH, or
LI NEAR KEY. Hereisan example similar to the previous one, differing only in that the table is parti-
tioned by LI NEAR KEY:

nmysql > CREATE TABLE clients_|l k (

-> id | NT,

== f name VARCHAR( 30),
== | nane VARCHAR( 30),
-> si gned DATE

->
-> PARTI TI ON BY LI NEAR KEY(si gned)
-> PARTI TI ONS 12;

Query OK, 0 rows affected (0.03 sec)

nysql > ALTER TABLE clients_| k COALESCE PARTI TI ON 4;

Query OK, 0 rows affected (0.06 sec)
Records: O Duplicates: 0 Warnings: O

Note that the number following COALESCE PARTI Tl ONisthe number of partitions to merge into the
remainder — in other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

30



Partition Management

nmysqgl > ALTER TABLE clients COALESCE PARTI Tl ON 18;
ERROR 1478 (HY000): Cannot renove all partitions, use DROP TABLE i nstead

To increase the number of partitionsfor thecl i ent s tablefrom 12t0 18. use ALTER TABLE . ..
ADD PARTI TI ON as shown here:

ALTER TABLE clients ADD PARTI TI ON PARTI TI ONS 6;

4.3. Maintenance of Partitions

A number of partitioning maintenance tasks can be carried out in MySQL 5.1. MySQL does not support
the commands CHECK TABLE, OPTI M ZE TABLE, ANALYZE TABLE, or REPAI R TABLE for par-
titioned tables. Instead, you can use a number of extensionsto ALTER TABLE which were implemen-
ted in MySQL 5.1.5. These can be used for performing operations of this type on one or more partitions
directly, as described in the following list:

» Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping al records stored
in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUI LD PARTI TI ON pO, p1l;

e Optimizing partitions: If you have deleted alarge number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR,
BLOB, or TEXT columns), you can use ALTER TABLE ... OPTIM ZE PARTI Tl ONtore-
claim any unused space and to defragment the partition datafile.

Example:
ALTER TABLE t1 OPTI M ZE PARTI TI ON p0, p1;

Using OPTI M ZE PARTI TI ON on agiven partition is equivalent to running CHECK
PARTI Tl ON, ANALYZE PARTI TI ON, and REPAI R PARTI TI ONon that partition.

* Analyzing partitions: This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTI TI ON p3;

* Repairing partitions: Thisrepairs corrupted partitions.

Example:

ALTER TABLE t1 REPAI R PARTI TI ON pO, p1;

» Checking partitions: Y ou can check partitions for errors in much the same way that you can use
CHECK TABLE with non-partitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTI TI ON p1;

This command will tell you if the data or indexesin partition p1 of tablet 1 are corrupted. If thisis

31



Partition Management

thecase, use ALTER TABLE ... REPAI R PARTI TI ONto repair the partition.

You can aso usethemysql check or myi santhk utility to accomplish these tasks, operating on the
separate . MY files generated by partitioning atable. See mysqlcheck
[http://dev.mysgl.com/doc/ref man/5.1/en/mysglcheck.html].

4.4. Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number of
ways. These include:

e Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a par-
titioned table.

» Using the SHOW TABLE STATUS statement to determine whether atable is partitioned.
* Querying the | NFORVATI ON_SCHENMA. PARTI TI ONS table.

» Using the statement EXPLAI N PARTI TI ONS SELECT to see which partitions are used by a given
SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includesin its output the PARTI T1 ON
BY clause used to create a partitioned table. For example:

mysql > SHOW CREATE TABLE trb3\G
khkkkhkkhkkhkkhkkhkhkhkhkhhhkhkhkkhkkhkhkhkhkhrhxdxxk l. I'OW khkkkhkkhkkhkkhkkhkhkhkhkhrhhkhkhkkhkkhkhkhkhkhrhxdxxk
Tabl e: trb3
Create Tabl e: CREATE TABLE "trb3" (
“id int(11) default NULL,
“nane’ varchar (50) default NULL,
“purchased’ date default NULL
) ENG NE=My| SAM DEFAULT CHARSET=I ati nl
PARTI TI ON BY RANGE ( YEAR( purchased)) (

PARTI TI ON pO VALUES LESS THAN (1990) ENGI NE = Myl SAM
PARTI TI ON pl VALUES LESS THAN (1995) ENGI NE = Myl SAM
PARTI TI ON p2 VALUES LESS THAN (2000) ENGI NE = Myl SAM
PARTI TI ON p3 VALUES LESS THAN (2005) ENG NE = Myl SAM

1 rowin set (0.00 sec)

Note: In early MySQL 5.1 releases, the PARTI TI ONS clause was not shown for tables partitioned by
HASH or KEY. Thisissue was fixed in MySQL 5.1.6.

SHOW TABLE STATUS works with partitioned tables. Beginning with MySQL 5.1.9, its output is the
same as that for non-partitioned tables, except that the Cr eat e_opt i ons column contains the string
partitioned.InMySQL 5.1.8 and earlier, the Engi ne column aways contained the value PARTI -
TI ON; beginning with MySQL 5.1.9, this column contains the name of the storage engine used by all
partitions of the table. (See SHOW TABLE STATUS Syntax
[http://dev.mysqgl.com/doc/refman/5.1/en/show-tabl e-status.html], for more information about this com-
mand.)

Y ou can a'so obtain information about partitions from | NFORMATI ON_SCHENA, which contains a
PARTI TI ONS table. See The | NFORVATI ON_SCHENA PARTI Tl ONS Table
[http://dev.mysql.com/doc/refman/5.1/en/partitions-table.html].

Beginning with MySQL 5.1.5, it is possible to determine which partitions of a partitioned table are in-
volved in agiven SELECT query using EXPLAI N PARTI TI ONS. The PARTI TI ONS keyword adds a
partitions column to the output of EXPLAI N listing the partitions from which records would be
matched by the query.

32


http://dev.mysql.com/doc/refman/5.1/en/mysqlcheck.html
http://dev.mysql.com/doc/refman/5.1/en/show-table-status.html
http://dev.mysql.com/doc/refman/5.1/en/partitions-table.html

Partition Management

Suppose that you have atablet r b1 defined and populated as follows:

CREATE TABLE trbl (id INT,
PARTI TI ON BY RANGE(i d)

(

name VARCHAR(50), purchased DATE)

PARTI TI ON pO VALUES LESS THAN (
PARTI TI ON p1 VALUES LESS THAN (
PARTI TI ON p2 VALUES LESS THAN (
| PARTI TI ON p3 VALUES LESS THAN (

I NSERT | NTO trbl VALUES

, 'desk organiser', '2003-10-15"),
' 1993-11-05"),

' 1996- 03-10")

' bookcase', '1982-01-10")

' exerci se bike', '2004-05-09'),

'sofa', '1987-06-05'),

, 'popcorn maker', '2001-11-22"),

"aquarium, '1992-08-04")

, 'study desk', '1984-09-16")

0, 'lava lanmp', '1998-12-25")

38

"o

%o
<
)
£

(
(
(
(
(
(
(
(
(
(

POONDUTAWNE

Y ou can see which partitions are used in aquery such as SELECT * FROM tr b1l; , asshown here:

nysql > EXPLAI N PARTI TI ONS SELECT * FROM trbl1\ G
kkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 1 r ow kkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x
id: 1
sel ect _type: SIMPLE
table: trbl
partitions: poO,pl, p2, p3
ALL

type:
possi bl e_keys: NULL

key:
key_| en:
ref:

r ows:
Extra

NULL

NULL

NULL

10

Using filesort

In this case, al four partitions are searched. However, when alimiting condition making use of the parti-
tioning key is added to the query, you can see that only those partitions containing matching values are
scanned, as shown here:

nysql > EXPLAI N PARTI TI ONS SELECT * FROM trbl WHERE id < 5\G

khkkhkkkhkkhkkhkkhkkhkhkhkhkhkkhkkhkhkkkhkkkkkkkkx*x 1 r ow khkkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*x

id: 1

sel ect _type
tabl e:
partitions:
type:
possi bl e_keys
key:

key | en:

ref:

rows:

Extra

S| MPLE
trbl

po, pl1

ALL

NULL

NULL

NULL

NULL

10

Usi ng where

EXPLAI N PARTI Tl ONS providesinformation about keys used and possible keys, just as with the

standard EXPLAI N SELECT statement:

nysql > ALTER TABLE trbl ADD PRI MARY KEY (i d)
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: O

nysql > EXPLAI N PARTI TI ONS SELECT * FROM trbl WHERE id < 5\G

LEEE AR EEE R EEEE L [ OW * XX *kokokkokkkokokok ok ok ok kkokokkkxkkok

id: 1

sel ect _type: SIMPLE
table: trbl
partitions: poO,pl
type: range
possi bl e_keys: PRI MARY
key: PRI MARY

33



Partition Management

key_len: 4
ref: NULL
rows: 7
Extra: Using where

Y ou should take note of the following restrictions and limitations on EXPLAI N PARTI TI ONS:

* You cannot use the PARTI TI ONS and EXTENDED keywords together in the same EXPLAI N . . .
SELECT statement. Attempting to do so produces a syntax error.

o If EXPLAI N PARTI Tl ONSis used to examine a query against a non-partitioned table, no error is
produced, but the value of theparti ti ons columnisaways NULL.

See also Optimizing Queries with EXPLAI N [http://dev.mysgl.com/doc/refman/5.1/en/explain.html].



http://dev.mysql.com/doc/refman/5.1/en/explain.html

Chapter 5. Partition Pruning

This section discusses partition pruning, an opimisation which was implemented for partitioned tablesin
MySQL 5.1.6.

The core concept behind partition pruning is relatively simple, and can be described as “ Do not scan par-
titions where there can be no matching values’. For example, suppose you have a partitioned tablet 1
defined by this statement:

CREATE TABLE t1 (
f name VARCHAR(50) NOT NULL,
| name VARCHAR(50) NOT NULL,
regi on_code TI NYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)

PARTI TI ON BY RANGE( regi on_code ) (
PARTI TI ON pO VALUES LESS THAN (64),
PARTI TI ON p1 VALUES LESS THAN (128),
PARTI TI ON p2 VALUES LESS THAN (192)
PARTI TI ON p3 VALUES LESS THAN MAXVALUE

Consider the case where you wish to obtain results from a query such as this one:

SELECT fnane, |nane, postcode, dob
FROM t 1
WHERE r egi on_code > 125 AND regi on_code < 130;

Itis easy to seethat none of the rows which ought to be returned will bein either of the partitions pO or
p3; that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is pos-
sible to expend much more time and effort in finding matching rows than it is to scan al partitionsin the
table. This“cutting away” of unneeded partitionsis known as pruning. When the optimiser can make
use of partition pruning in performing a query, execution of the query can be an order of magnitude
faster than the same query against a non-partitioned table containing the same column definitions and
data

The query optimiser can perform pruning whenever a WHERE condition can be reduced to either one of
the following:

e partition_colum = constant

e partition_colum IN (constantl, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given, determ-
ines which partition contains that value, and scans only this partition. In the second case, the optimizer
evaluates the partitioning expression for each valuein the list, creates alist of matching partitions, and
then scans only the partitions in this partition list.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of val-
ues. For instance, in the previous example, the WHERE clause can be converted to WHERE r e-

gion_code IN (125, 126, 127, 128, 129, 130). Thentheoptimizer can determine that
the first three valuesin the list are found in partition p1, the remaining three values in partition p2, and
that the other partitions contain no relevant values and so do not need to be searched for matching rows.

This type of optimization can be applied whenever the partitioning expression consists of an equality or
arange which can be reduced to a set of equalities. It can also be employed when the partitioning ex-
pression represents an increasing or decreasing relationship or uses a function such as YEAR() or

TO DAYS() that produces an integer value when applied to a DATE or DATETI ME column value. For

35



Partition Pruning

example, suppose that tablet 2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t 2 (
fname VARCHAR(50) NOT NULL,
| name VARCHAR(50) NOT NULL,
regi on_code TI NYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)

PARTI TI ON BY RANGE( YEAR(dob) ) (
PARTI TI ON dO VALUES LESS THAN (1970),
PARTI TI ON d1 VALUES LESS THAN (1975),
PARTI TI ON d2 VALUES LESS THAN (1980),
PARTI TI ON d3 VALUES LESS THAN (1985),
PARTI TI ON d4 VALUES LESS THAN (1990),
PARTI TI ON d5 VALUES LESS THAN (2000),
PARTI TI ON d6 VALUES LESS THAN (2005),
PARTI TI ON d7 VALUES LESS THAN MAXVALUE

Thefollowing queriesont 2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = ' 1982-06-23';
SELECT * FROM t 2 WHERE dob BETWEEN ' 1991-02-15' AND ' 1997- 04- 25" ;

SELECT * FROM t 2 WHERE YEAR(dob)
IN (1979, 1980, 1983, 1985, 1986, 1988);

SELECT * FROM t2 WHERE dob >= ' 1984-06-21' AND dob <= '1999-06-21'

In the case of the last query, the optimizer can also act asfollows:

1. Find the partition containing the low end of the range.

YEAR(' 1984-06- 21" ) yieldsthevalue 1984, whichisfound in partition d3.
2. Find the partition containing the high end of the range.

YEAR(' 1999- 06- 21" ) evaluatesto 1999, which isfound in partition d5.
3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitionsd3, d4, and d5 are scanned. The remaining partitions
may be safely ignored (and are ignored).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with oth-
er partitioning types as well.

Consider atablethat is partitioned by LI ST, where the partitioning expression isincreasing or decreas-
ing, such asthetablet 3 shown here. (In this example, we assume for the sake of brevity that ther e-
gi on_code columnislimited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
f name VARCHAR(50) NOT NULL,
| name VARCHAR(50) NOT NULL,
regi on_code TI NYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)
PARTI TI ON BY LI ST(regi on

_code) (
PARTI TION rO0 VALUES IN (1, 3),
PARTI TION r1 VALUES IN (2, 5, 8)
PARTI TION r2 VALUES IN (4, 9),
PARTI TION r3 VALUES IN (6, 7, 10)

For aquery suchas SELECT * FROM t 3 WHERE regi on_code BETWEEN 1 AND 3, the op-

36



Partition Pruning

timizer determinesin which partitions the values 1, 2, and 3 arefound (r 0 and r 1) and skipsthe re-
maining ones (r 2 and r 3).

For tables that are partitioned by HASH or KEY, partition pruning is also possible in cases in which the
VWHERE clause uses a simple = relation against a column used in the partitioning expression. Consider a
table created like this:

CREATE TABLE t4 (
fname VARCHAR(50) NOT NULL,
| name VARCHAR(50) NOT NULL,
regi on_code TI NYI NT UNSI GNED NOT NULL,
dob DATE NOT NULL

)

PARTI TI ON BY KEY(r egi on_code)

PARTI TI ONS 8;

Any query such as this one can be pruned:

SELECT * FROM t4 WHERE regi on_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditionsinto | N
relations. For example, using the sametablet 4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE regi on_code > 2 AND regi on_code < 6;
SELECT * FROM t4 WHERE regi on_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE r egi on_code
IN (3, 4, 5).Important: Thisoptimizationis used only if the range size is smaller than the num-
ber of partitions. Consider this query:

SELECT * FROM t4 WHERE regi on_code BETWEEN 4 AND 8;

Therange in the WHERE clause covers 5 values (4, 5, 6, 7, 8), but t 4 has only 4 partitions. This means
that the previous query cannot be pruned.

Pruning can be used only on integer columns of tables partitioned by HASH or KEY. For example, this
query on tablet 4 cannot use pruning because dob isa DATE column:

SELECT * FROM t4 WHERE dob >=- '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year valuesin an | NT column, then a query having WHERE year col
>= 2001 AND year _col <= 2005 can be pruned.

37



Chapter 6. Restrictions and Limitations on
Partitioning

This section discusses current restrictions and limitations on MySQL partitioning support, as listed here:

» If, when creating tables with avery large number of partitions, you encounter an error message such
as Got error 24 from storage engine, you may need to increase the value of the
open_files_limt systemvariable. See'Fi | e' Not Found and Similar Errors
[http://dev.mysgl.com/doc/refman/5.1/en/not-enough-file-handles.html].

» Partitioned tables do not support foreign keys. This includes partitioned tables employing the | n-
noDB storage engine.

» Partitioned tables do not support FULLTEXT indexes. This includes partitioned tables employing the
My | SAMstorage engine.

» Partitioned tables do not support GEOVETRY columns.

» Asof MySQL 5.1.8, temporary tables cannot be partitioned. (Bug#17497
[http://bugs.mysqgl.com/17497])

Tables using the VERGE storage engine cannot be partitioned.

Partitioned tables using the CSV storage engine are not supported. Starting with MySQL 5.1.12, it is
not possible to create partitioned CSV tables at all.

Prior to MySQL 5.1.6, tables using the BLACKHOL E storage engine also could not be partitioned.

Partitioning by KEY (or LI NEAR KEY) isthe only type of partitioning supported for the NDB stor-
age engine. Beginning with MySQL 5.1.12, it is not possible to create a Cluster table using any par-
titioning type other than [LI NEAR] KEY, and attempting to do so givesriseto an error.

»  When performing an upgrade, tables using any storage engine other than NDBCL USTER and which
are partitioned by KEY must be dumped and rel oaded.

» All of atable's partitions and subpartitions (if there are any of the latter) must use the same storage
engine.

e A partitioning key must be either an integer column or an expression that resolves to an integer. The
column or expression value may also be NULL. (See Section 3.6, “How MySQL Partitioning
Handles NULL Values’.)

The one exception to this restriction occurs when partitioning by [L1 NEAR] KEY — whereiit is pos-
sible to use columns of other types types as partitioning keys — because MySQL 's internal key-
hashing functions produce the correct datatype from these types. For example, the following CRE-
ATE TABLE statement isvalid:

CREATE TABLE tkc (cl CHAR)
PARTI TI ON BY KEY(c1)
PARTI TI ONS 4;

This exception does not apply to BLOB or TEXT column types.

» A partitioning key may not be a subquery, even if that subquery resolvesto an integer value or
NULL.

38


http://dev.mysql.com/doc/refman/5.1/en/not-enough-file-handles.html
http://bugs.mysql.com/17497

Restrictions and Limitations on Partitioning

All columns used in the partitioning expression for a partitioned table must be part of every unique
key that the table may have. In other words, every unique key on the table must use every columnin
the tables partitioning expression. For example, each of the following table creation statementsisin-
valid:

CREATE TABLE t1 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
UNI QUE KEY (col 1, col2)

)
PARTI TI ON BY HASH( col 3)
PARTI TI ONS 4;

CREATE TABLE t2 (
col 1 INT NOT NULL,
col 2 DATE NOT NULL,
col 3 INT NOT NULL,
col 4 | NT NOT NULL,
UNI QUE KEY (col 1),
UNI QUE KEY (col 3)

)
PARTI TI ON BY HASH(col 1 + col 3)
PARTI TI ONS 4,

CREATE TABLE t 3 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 | NT NOT NULL,
col 4 | NT NOT NULL,
UNI QUE KEY (col 1, col2),
UNI QUE KEY (col 3)

)
PARTI TI ON BY HASH(col 1 + col 3)
PARTI TI ONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statementsis valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 | NT NOT NULL,
UNI QUE KEY (col 1, col 2, col 3)

)
PARTI TI ON BY HASH( col 3)
PARTI TI ONS 4;

CREATE TABLE t2 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 | NT NOT NULL,
col 4 | NT NOT NULL,
UNI QUE KEY (col 1, col 3)

)
PARTI TI ON BY HASH(col 1 + col 3)
PARTI TI ONS 4;

CREATE TABLE t3 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 | NT NOT NULL,
UNI QUE KEY (col 1, col 2, col 3),
UNI QUE KEY (col 3)

)
PARTI TI ON BY HASH( col 3)
PARTI TI ONS 4;

39



Restrictions and Limitations on Partitioning

Since every primary key is by definition a unique key, this restriction also includes the table's
primary key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t4 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 | NT NOT NULL,
col 4 | NT NOT NULL,
PRI MARY KEY(col 1, col 2)

)
PARTI TI ON BY HASH( col 3)
PARTI TI ONS 4;

CREATE TABLE t5 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
PRI MARY KEY(col 1, col 3),
UNI QUE KEY( col 2)

)
PARTI TI ON BY HASH( YEAR(col 2) )
PARTI TI ONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t6 (
col 1 | NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 I NT NOT NULL,
PRI MARY KEY(col 1, col 2)

)
PARTI TI ON BY HASH(col 1 + YEAR(col 2))
PARTI TI ONS 4;

CREATE TABLE t7 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 I NT NOT NULL,
col 4 | NT NOT NULL,
PRI MARY KEY(col 1, col 2, col 4),
UNI QUE KEY(col 2, col 1)

)
PARTI TI ON BY HASH(col 1 + YEAR(col 2))
PARTI TI ONS 4;

If atable has no unique keys — thisincludes having no primary key — then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
al columns used by the tabl€e's partitioning expression. Consider given the partitioned table defined
as shown here:

CREATE TABLE t_no_pk (cl INT, c2 INT)
PARTI TI ON BY RANGE(c1) (
PARTI TI ON pO VALUES LESS THAN (10),
PARTI TI ON pl VALUES LESS THAN (20),
PARTI TI ON p2 VALUES LESS THAN (30),
) PARTI TI ON p3 VALUES LESS THAN (40)

Itispossibleto add aprimary keytot _no_pk using either of these ALTER TABLE statements:

# possible PK
ALTER TABLE t _no_pk ADD PRI MARY KEY(c1l);

# also a possible PK

40



Restrictions and Limitations on Partitioning

ALTER TABLE t_no_pk ADD PRI MARY KEY(cl, c2);

However, the next statement fails, because c 1 is part of the partitioning key, but is not part of the
proposed primary key:

# fails with ERROR 1482
ALTER TABLE t _no_pk ADD PRI MARY KEY(c2);

Sincet _no_pk hasonly c1 inits partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c 2.

These rules aso apply to existing non-partitioned tables that you wish to partition using ALTER
TABLE ... PARTI TI ON BY. Consider atable np_pk defined as shown here:

CREATE TABLE np_pk (
id INT NOT NULL AUTO | NCREMENT,
nane VARCHAR(50),
added DATE,
PRI MARY KEY (id)

Thefollowing ALTER TABLE statements fails with an error, because the added column is not part
of any unique key in the table:

ALTER TABLE np_pk
PARTI TI ON BY HASH( TO DAYS(added) )
PARTI TI ONS 4;

This statement, however, would be valid:

ALTER TABLE np_pk
PARTI TI ON BY HASH(i d)
PARTI TI ONS 4;

In the case of np_pk, the only column that may be used as part of a partitioning expressionisi d; if
you wish to partition this table using any other column or columns in the partitioning expression,
you must first modify the table, either by adding the desired column or columns to the primary key,
or by dropping the primary key altogether.

We are working to remove this limitation in afuture MySQL release series.

Subpartitions are limited to HASH or KEY partitioning. HASH and KEY partitions cannot be subparti-
tioned.

41



Chapter 7. SQL Statements for Creating and
Altering Partitioned Tables

This chapter covers extensions to the MySQL CREATE TABLE and ALTER TABLE statements that
are specific to partitioned tables. For complete information about CREATE TABLE and ALTER TA-
BLE asimplemented in MySQL 5.1, see CREATE TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/create-table.html], and ALTER TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/alter-table.html], in the MySQL 5.1 Manual.

For detailed information on the types of table partitioning supported in MySQL 5.1, see Chapter 3, Par-
tition Types.

For limitations on partitioned tables, see Chapter 6, Restrictions and Limitations on Partitioning.

7.1. Partitioning Extensions to CREATE TABLE

The following section coversthe CREATE TABLE statement asit relatesto partitioned tablesin
MySQL 5.1. It assumes that you are already familiar with CREATE TABLE.

CREATE [ TEMPORARY] TABLE [IF NOT EXI STS] thl _nanme
(create_definition,...)
[table_option ...]
[partition_options]

Or:

CREATE [ TEMPORARY] TABLE [IF NOT EXI STS] thl name
[(create_definition,...)]
[table_option ...]
[partition_options]
sel ect _st at enent

partition_options:
PARTI TI ON BY
[ LI NEAR] HASH( expr)
| [LINEAR] KEY(col umm_Ii st)
| RANGE( expr)
| LI ST(expr)
[ PARTI TI ONS nun]
[ SUBPARTI TI ON BY
[ LI NEAR] HASH( expr)
| [LINEAR] KEY(colum_Iist)
[ SUBPARTI TI ONS nunj

[(partition_definition [, partition_definition] ...)]

partition_definition:
PARTI TI ON partition_nane
VALUES {LESS THAN (expr) | MAXVALUE | IN (value_list)}]
[ STORAGE] ENG NE [ =] engi ne_nane]
COMMENT [ =] 'conment_text' ]
DATA DI RECTORY [=] 'data_dir']
| NDEX DI RECTORY [=] 'index_dir"']
MAX_ROAS [ =] nax_nunber _of rows]
M N_ROAS [ =] mi n_nunber_of _rows]
TABLESPACE [ =] (tabl espace_nane)]
NODEGROUP [ =] node_group_i d]
(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:

SUBPARTI TI ON | ogi cal _nane
[ STORAGE] ENG NE [ =] engi ne_nane]
COWENT [ =] 'comment_text' ]
DATA DI RECTORY [=] 'data dir']
I NDEX DI RECTORY [=] 'index_dir"]
MAX_ROWS [ =] nex_nunber _of _rows]

42


http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

SQL Statements for Creating and Altering

Partitioned Tables
[M N ROAS [=] mi n_nunber_of _rows]
[ TABLESPACE [ =] (tabl espace_nane)]
[ NODEGROUP [ =] node_group_i d]

CREATE TABLE creates atable with the given name. Rules for allowable table names are given in
Database, Table, Index, Column, and Alias Names
[http://dev.mysql.com/doc/refman/5.1/en/legal -names.html].

For information about other aspects of this statement not discussed here, see CREATE TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/create-tabl e.html], in the MySQL 5.1 Manual.

7.1.1. Using the partition_opti ons Clause

partition_options canbe used to control partitioning of the table created with CREATE TABLE,
and if used, must contain at aminimum a PARTI TI ON BY clause. This clause contains the function
that is used to determine the partition; the function returns an integer value ranging from 1 to num
where numis the number of partitions. The choicesthat are available for this function in MySQL 5.1 are
shown in the following list.

Important: Not all options shown in the syntax for parti ti on_opti ons at the beginning of this
section are available for al partitioning types. Please see the listings for the following individua types
for information specific to each type, and see Partitioning

[http://dev.mysgl.com/doc/ref man/5./en/partitioning.html], for more complete information about the
workings of and uses for partitioning in MySQL, as well as additional examples of table creation and
other statements relating to MySQL partitioning.

» HASH( expr) : Hashes one or more columnsto create akey for placing and locating rows. expr is
an expression using one or more table columns. This can be any legal MySQL expression (including
MySQL functions) that yields asingle integer value. For example, these are all valid CREATE TA-
BLE statements using PARTI TI ON BY HASH:

CREATE TABLE t1 (col1 INT, col 2 CHAR(5))
PARTI TI ON BY HASH(col 1) :

CREATE TABLE t1 (col1 INT, col 2 CHAR(5))
PARTI TI ON BY HASH( ORD(col 2) ):

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col 3 DATETI ME)
PARTI TI ON BY HASH ( YEAR(col3) );

Y ou may not use either VALUES LESS THANor VALUES | N clauseswith PARTI TI ON BY
HASH.

PARTI TI ON BY HASH usesthe remainder of expr divided by the number of partitions (that is,
the modulus). For examples and additional information, see Section 3.3, “HASH Partitioning”.

The L1 NEAR keyword entails a somewhat different algorithm. In this case, the number of the parti-
tioninwhich arow is stored is calculated as the result of one or more logical AND operations. For
discussion and examples of linear hashing, see Section 3.3.1, “LI NEAR HASH Partitioning”.

e KEY(columm_list): Thisissimilar to HASH, except that MySQL supplies the hashing function
S0 asto guarantee an even data distribution. Thecol unm_I i st argument issimply alist of table
columns. This example shows a simple table partitioned by key, with 4 partitions:

CREATE TABLE tk (coll INT, col 2 CHAR(5), col 3 DATE)
PARTI TI ON BY KEY(col 3)
PARTI TI ONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LI NEAR
keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition

43


http://dev.mysql.com/doc/refman/5.1/en/legal-names.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/partitioning.html

SQL Statements for Creating and Altering
Partitioned Tables

number is found using the & operator rather than the modulus (see Section 3.3.1, “LI NEAR HASH
Partitioning”, and Section 3.4, “KEY Partitioning”, for details). This example uses linear partitioning
by key to distribute data between 5 partitions:

CREATE TABLE tk (coll INT, col 2 CHAR(5), col 3 DATE)
PARTI TI ON BY LI NEAR KEY(col 3)
PARTI TI ONS 5;

Y ou may not use either VALUES LESS THANor VALUES | N clauses with PARTI TI ON BY
KEY.

RANCE: In this case, expr showsarange of values using aset of VALUES LESS THAN operators.
When using range partitioning, you must define at least one partition using VALUES LESS THAN.
Y ou cannot use VALUES | N with range partitioning.

VALUES LESS THAN can be used with either aliteral value or an expression that evaluatesto a
single value.

Suppose that you have a table that you wish to partition on a column containing year values, accord-
ing to the following scheme:

Partition Number: Y ears Range:

1990 and earlier

1991 — 1994

1995 —1998

1999 — 2002

2003 - 2005

g bl W|N| | O

2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

year _col

CREATE TABLE t1
|
sonme_data |

(
NT,
NT

)
PARTI TI ON BY RANGE (year _col) (
PARTI TI ON p0 VALUES LESS THAN (1991),

PARTI TI ON pl VALUES LESS THAN (1995),
PARTI TI ON p2 VALUES LESS THAN (1999),
PARTI TI ON p3 VALUES LESS THAN (2002),
PARTI TI ON p4 VALUES LESS THAN ( 2006),
PARTI TI ON p5 VALUES LESS THAN MAXVALUE
DE
PARTI TION ... VALUES LESS THAN ... statementswork in a consecutive fashion. VAL-

UES LESS THAN NMAXVALUE worksto specify “leftover” valuesthat are greater than the maxim-
um value otherwise specified.

Note that VALUES LESS THAN clauses work sequentially in amanner similar to that of thecase
portionsof aswi t ch ... case block (asfoundin many programming languages such as C,
Java, and PHP). That is, the clauses must be arranged in such away that the upper limit specified in
each successive VALUES LESS THAN s greater than that of the previous one, with the one refer-
encing MAXVALUE coming last of al inthelist.

LI ST(expr) : Thisis useful when assigning partitions based on a table column with arestricted set
of possible values, such as a state or country code. In such acase, all rows pertaining to a certain
state or country can be assigned to a single partition, or a partition can be reserved for a certain set of

44




SQL Statements for Creating and Altering
Partitioned Tables

states or countries. It is similar to RANGE, except that only VALUES | N may be used to specify a-
lowable values for each partition.

VALUES | Nisusedwith alist of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client _firms (
id INT,
nanme VARCHAR( 35)

)

PARTI TI ON BY LIST (id) (
PARTI TION r0 VALUES I N
PARTI TION r1 VALUES I N
PARTI TION r2 VALUES IN
PARTI TION r3 VALUES IN

, 9, 13, 17, 21),
. 10, 14, 18, 22),
.11, 15, 19, 23),
. 12, 16, 20, 24)

PO
0~ 01

When using list partitioning, you must define at least one partition using VALUES | N. Y ou cannot
use VALUES LESS THANwith PARTI TI ON BY LI ST.

Note: Currently, the value list used with VALUES | N must consist of integer values only.

» The number of partitions may optionally be specified with a PARTI TI ONS numclause, where num
isthe number of partitions. If both this clause and any PARTI Tl ON clauses are used, nummust be
equal to the total number of any partitions that are declared using PARTI Tl ON clauses.

Note: Whether or not you use a PARTI TI ONS clause in creating atable that is partitioned by
RANGE or LI ST, you must still include at least one PARTI TI ON VALUES clause in the table
definition (see below).

* A partition may optionally be divided into a number of subpartitions. This can be indicated by using
the optional SUBPARTI Tl ON BY clause. Subpartitioning may be done by HASH or KEY. Either of
these may be L1 NEAR. These work in the same way as previously described for the equivalent parti-
tioning types. (It is not possible to subpartition by LI ST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTI TI ONS keyword followed by an
integer value.

*  MySQL 5.1.12 introduces rigourous checking of the value used in a PARTI TI ONS or SUBPARTI -
TI ONS clause. Beginning with this version, this value must adhere to the following rules:

e Thevaue must be a positive, non-zero integer.
* Noleading zeroes are permitted.
e Thevaue must be an integer literal, and cannot not be an expression. For example, PARTI -

TI ONS 0. 2E+01 isnot allowed, even though 0. 2E+01 evauatesto 2. (Bug#15890
[http://bugs.mysgl.com/15890])

7.1.2. Using partition_definitionClauses

Each partition may be individually defined usingapartiti on_defi niti on clause. Theindividua
parts making up this clause are as follows:

* PARTITION partition_nane: Thisspecifiesalogical name for the partition.

» A VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN
clause; for list partitioning, you must specify a VALUES | N clause for each partition. Thisisused to
determine which rows are to be stored in this partition. See the discussions of partitioning typesin

45


http://bugs.mysql.com/15890

SQL Statements for Creating and Altering
Partitioned Tables

Partitioning [http://dev.mysqgl.com/doc/refman/5./en/partitioning.html], for syntax examples.

An optional COVIVENT clause may be used to describe the partition. The comment must be set off in
single quotes. Example:

COMMENT = 'Data for the years previous to 1999

DATA DI RECTORY and | NDEX DI RECTCRY may be used to indicate the directory where, re-
spectively, the data and indexes for this partition are to be stored. Both thedat a_di r and thei n-
dex_di r must be absolute system pathnames. Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTI TI ON BY LI ST( YEAR(adat e))
(

PARTI TI ON p1999 VALUES | N (1995, 1999, 2003)
DATA DI RECTORY = '/var/ appdat a/ 95/ dat a'
| NDEX DI RECTORY = '/var/appdata/95/i dx"',
PARTI TI ON p2000 VALUES IN (1996, 2000, 2004)
DATA DI RECTORY = '/var/ appdat a/ 96/ dat a'
| NDEX DI RECTORY = '/var/appdatal/ 96/i dx',
PARTI TI ON p2001 VALUES IN (1997, 2001, 2005)
DATA DI RECTORY = '/var/appdata/ 97/ data'
| NDEX DI RECTORY = '/var/ appdata/97/i dx',
PARTI TI ON p2000 VALUES | N (1998, 2002, 2006)
DATA DI RECTORY = '/var/ appdat a/ 98/ dat a'
I NDEX DI RECTORY = '/var/ appdata/ 98/i dx'

DATA DI RECTORY and | NDEX DI RECTORY behave in the same way asin the CREATE TABLE
statement'st abl e_opt i on clause as used for Myl SAMtables.

One data directory and one index directory may be specified per partition. If |eft unspecified, the
data and indexes are stored by default in the MySQL data directory.

MAX_ROAS and M N_ROWS may be used to specify, respectively, the maximum and minimum
number of rows to be stored in the partition. The values for max_nunber of rows and

m n_nunber _of rows must be positive integers. Aswith the table-level options with the same
names, these act only as “suggestions’ to the server and are not hard limits.

The optional TABLESPACE clause may be used to designate a tablespace for the partition. Used for
MySQL Cluster only.

Note: The partitioning handler acceptsa| STORAGE] ENG NE option for both PARTI TI ON and
SUBPARTI TI ON. Currently, the only way in which this can be used isto set al partitions or all sub-
partitions to the same storage engine, and an attempt to set different storage engines for partitions or
subpartitions in the same table will give rise to the error ERROR 1469 (HY 000): The mix of hand-
lersin the partitionsis not allowed in this version of MySQL. We expect to lift this restriction on
partitioning in a future MySQL release.

The NODEGROUP option can be used to make this partition act as part of the node group identified
by node_group_i d. Thisoption is applicable only to MySQL Cluster. See MySQL Cluster
[http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html], in the MySQL 5.1 Manual.

The partition definition may optionally contain one or moresubpartiti on_definition
clauses. Each of these consists at a minimum of the SUBPARTI TI ON nane, wherenane isan
identifier for the subpartition. Except for the replacement of the PARTI TI ON keyword with SUB-
PARTI Tl ON, the syntax for a subpartition definition isidentical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LI ST partitions.
See Section 3.5, “Subpartitioning”.

46


http://dev.mysql.com/doc/refman/5.1/en/partitioning.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html

SQL Statements for Creating and Altering
Partitioned Tables

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information
about the MySQL statements to accomplish these tasks, see Section 7.2, “ Partitioning Extnesions to the
ALTER TABLE Statement”. For more detailed descriptions and examples, see Chapter 4, Partition
Management.

7.2. Partitioning Extnesions to the ALTER TABLE
Statement

A number of partitioning-related extensionsto ALTER TABLE, added in MySQL versions 5.1.5 and
later, are discussed in this section. ALTER TABLE options not relating directly to partitioned tables are
not covered here — for these, you should refer to ALTER TABLE Syntax
[http://dev.mysql.com/doc/refman/5.1/en/alter-table.html], in the MySQL 5.1 Manual.

ALTER [ | GNORE] TABLE tbl name

PARTI TI ON BY partition_options

ADD PARTI TI ON (partition_definition)
DROP PARTI TI ON partiti on_nanes
COALESCE PARTI TI ON nunber

REORGANI ZE PARTI TI ON partition_nanes |INTO (partition_definitions)
ANALYZE PARTI TI ON partition_nanes
CHECK PARTI TI ON partition_nanes
OPTI M ZE PARTI TION partition_nanmes
REBUI LD PARTI TI ON partition_nanes
REPAI R PARTI TI ON partiti on_nanes
REMOVE PARTI TI ONI NG

The options listed above can be used with partitioned tables for repartitioning tables; for adding, drop-
ping, merging, and splitting table partitions; and for performing partitioning maintenance.

Simply usingapartition_options clausewith ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by theparti ti on_opti ons. Thisclauseal-
ways beginswith PARTI TI ON BY, and follows the same syntax and other rules as apply to the par -
tition_options clausefor CREATE TABLE (see Section 7.1, “Partitioning Extensions to CREATE
TABLE”, for more detailed information), and can also be used to partition an existing table that is not
already partitioned. For example, consider a (non-partitioned) table defined as shown here:

CREATE TABLE t1 (
id |NT,
year_col | NT

Thistable can be partitioned by HASH, using the i d column as the partitioning key, into 8 partitions by
means of this statement:

ALTER TABLE t1
PARTI TI ON BY HASH(i d)

PARTI TI ONS 8;
Thetable that resultsfrom usingan ALTER TABLE ... PARTI TI ON BY statement must follow the
same rules as one created using CREATE TABLE ... PARTI TI ON BY. Thisincludes the rules gov-

erning the relationship between any unique keys (including any primary key) that the table might have,
and the column or columns used in the partitioning expression, as discussed in Partitioning Limitations:

Partitioning Keys and Unique Keys. The CREATE TABLE ... PARTI TI ON BY rulesfor specifying
the number of partitionsalso apply to ALTER TABLE ... PARTI TI ON BY.
ALTER TABLE ... PARTI TI ON BY became availablein MySQL 5.1.6.

Thepartition_definitionclausefor ALTER TABLE ADD PARTI TI ON supports the same
options as the clause of the same name does for the CREATE TABLE statement clause of the same

47


http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

SQL Statements for Creating and Altering
Partitioned Tables

name. (See Section 7.1, “Partitioning Extensions to CREATE TABLE”, for the syntax and description.)
Suppose that you have the partitioned table created as shown here;
CREATE TABLE t1 (

id INT

id ,
year_col | NT

)

PARTI TI ON BY RANGE (year_col) (
PARTI TI ON pO VALUES LESS THAN (1991),
PARTI TI ON p1 VALUES LESS THAN (1995),
PARTI TI ON p2 VALUES LESS THAN (1999)

Y ou can add a new partition p3 to this table for storing values lessthen 2002 asfollows:

ALTER TABLE t1 ADD PARTI TI ON ( PARTI TI ON p3 VALUES LESS THAN (2002));

DROP PARTI TI ON can be used to drop one or more RANGE or LI ST partitions. This statement cannot
be used with HASH or KEY partitions; instead, use COALESCE PARTI TI ON (see below). Any data that
was stored in the dropped partitions named inthepar ti ti on_nanes list isdiscarded. For example,
giventhetablet 1 defined previously, you can drop the partitions named p0O and p1 as shown here;

ALTER TABLE t1 DROP PARTI TI ON pO, p1;

Note that DROP PARTI T1 ON does not work with tablesthat usethe NDB Cl ust er storage engine.
See Section 4.1, “Management of RANGE and LI ST Partitions’, and Known Limitations of MySQL
Cluster [http://dev.mysql.com/doc/refman/5.1/en/mysgl-cluster-limitations.html].

ADD PARTI TI ONand DROP PARTI TI ONdo not currently support | F [ NOT] EXI STS. Itisaso
not possible to rename a partition or a partitioned table. Instead, if you wish to rename a partition, you
must drop and re-create the partition; if you wish to rename a partitioned table, you must instead drop all
partitions, rename the table, and then add back the partitions that were dropped.

COALESCE PARTI TI ON can be used with atable that is partitioned by HASH or KEY to reduce the
number of partitions by number . Suppose that you have created table t 2 using the following defini-
tion:

CREATE TABLE t2 (
nane VARCHAR (30),
started DATE

)
PARTI TI ON BY HASH( YEAR(started) )
PARTI TI ONS 6;

Y ou can reduce the number of partitions used by t 2 from 6 to 4 using the following statement:

ALTER TABLE t2 COALESCE PARTI TI ON 2;

The data contained in the last nunber partitions will be merged into the remaining partitions. In this
case, partitions 4 and 5 will be merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3.

To change some but not all the partitions used by a partitioned table, you can use REORGANI ZE PAR-

TI TI ON. This statement can be used in severa ways:

» Tomergeaset of partitions into a single partition. This can be done by naming several partitionsin
thepartiti on_nanes list and supplying asingle definition for parti ti on_defi ni ti on.

e To split an existing partition into several partitions. Y ou can accomplish this by naming a single par-
tition for parti ti on_nanes and providing multiplepartiti on_definitions.

48


http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations.html

SQL Statements for Creating and Altering
Partitioned Tables

» To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value
listsfor a subset of partitions defined using VALUES | N.

Note: For partitions that have not been explicitly named, MySQL automatically provides the default
names p0, p1, p2, and so on. As of MySQL 5.1.7, the same is true with regard to subpartitions.

For more detailed information about and examplesof ALTER TABLE ... REORGANI ZE PARTI -
TI ON statements, see Chapter 4, Partition Management.

Severa additional clauses provide partition maintenance and repair functionality analogousto that im-
plemented for non-partitioned tables by statements such as CHECK TABLE and REPAI R TABLE
(which are not supported for partitioned tables). Theseinclude ANALYZE PARTI TI ON, CHECK PAR-
TITI ON, OPTI M ZE PARTI TI ON, REBUI LD PARTI TI ON, and REPAI R PARTI Tl ON. Each of
these optionstakesapartiti on_namnes clause consisting of one or more names of partitions, separ-
ated by commas. The partitions must already exist in the table to be altered. For more information, and
for examples of these, see Section 4.3, “Maintenance of Partitions”.

REMOVE PARTI TI ONI NGwas introduced in MySQL 5.1.8 for the purpose of removing atable's parti-
tioning without otherwise affecting the table or its data. (Previoudly. this was done using the ENG NE
option.) This option can be combined with other ALTER TABLE options such as those used to add,
drop, or rename drop columns or indexes.

In MySQL 5.1.7 and earlier, using the ENG NE option with ALTER TABLE caused any partitioning
that atable might have had to be removed. Beginning with MySQL 5.1.8, this option merely changes the
storage engine used by the table and no longer affects partitioning in any way.

49



Chapter 8. The | NFORVATI ON_SCHENA
PARTI Tl ONS Table

The PARTI TI ONS table provides information about table partitions.

| NFORVATI ON_SCHENA Name

SHOWName

Remarks

TABLE_CATALOG

MySQL extension

TABLE_SCHEMA

MySQL extension

TABLE_NAME

MySQL extension

PARTI T1 ON_NAME

MySQL extension

SUBPARTI TI ON_NAME

MySQL extension

PARTI T1 ON_ORDI NAL_POSI Tl ON

MySQL extension

SUBPART] -
TI ON_ORDI NAL_POsSI Tl ON

MySQL extension

PARTI TI ON_METHCOD

MySQL extension

SUBPARTI TI ON_METHOD

MySQL extension

PARTI TI ON_EXPRESSI ON

MySQL extension

SUBPARTI TI ON_EXPRESSI ON

MySQL extension

PARTI T1 ON_DESCRI PTI ON

MySQL extension

TABLE ROWS MySQL extension
AVG_ROW LENGTH MySQL extension
DATA_LENGTH MySQL extension
MAX_DATA_LENGTH MySQL extension
| NDEX_ LENGTH MySQL extension
DATA_FREE MySQL extension
CREATE_TI ME MySQL extension
UPDATE_TI ME MySQL extension
CHECK _TI ME MySQL extension
CHECKSUM MySQL extension
PARTI TI ON_COMVENT MySQL extension
NODEGROUP MySQL extension

TABLESPACE_NAME

MySQL extension

Notes:

» ThePARTI TI ONS table is a non-standard table. It was added in MySQL 5.1.6.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

* TABLE_CATALQOG: Thiscolumnisaways NULL.

e TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

» TABLE_NAME: This column contains the name of the table containing the partition.

50




The | NFORVATI ON_SCHEVA PARTI -
TI ONS Table

PARTI TI ON_NANME: The name of the partition.

SUBPARTI TI ON_NANE: If the PARTI T1 ONS table record represents a subpartition, then this
column contains the name of subpartition; otherwiseitis NULL.

PARTI TI ON_ORDI NAL_PGCsI TI ON: All partitions are indexed in the same order asthey are
defined, with 1 being the number assigned to the first partition. The indexing can change as parti-
tions are added, dropped, and reorganized; the number shown is this column reflects the current or-
der, taking into account any indexing changes.

SUBPARTI TI ON_ORDI NAL_POSI TI ON: Subpartitions within a given partition are also indexed
and reindexed in the same manner as partitions are indexed within atable.

PARTI TI ON_METHOD: One of the values RANGE, LI ST, HASH, LI NEAR HASH, KEY, or LI N-
EAR KEY; that is, one of the available partitioning types as discussed in Chapter 3, Partition Types.

SUBPARTI Tl ON_METHOD: One of the values HASH, LI NEAR HASH, KEY, or LI NEAR KEY;
that is, one of the available subpartitioning types as discussed in Section 3.5, “ Subpartitioning”.

PARTI TI ON_EXPRESSI ON: Thisisthe expression for the partitioning function used in the CRE-
ATE TABLE or ALTER TABLE statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in thet est database using this statement:
CREATE TABLE tp (

cl I NT,

c2 | NT,

c3 VARCHAR( 25)

)
PARTI TI ON BY HASH(cl + c2)
PARTI TI ONS 4;

The PARTI TI ON_EXPRESSI ON columnin a PARTITIONS table record for a partition from this
tabledisplayscl + c2, asshown here:

nysql > SELECT DI STI NCT PARTI TI ON_EXPRESSI ON

> FROM | NFORVATI ON_SCHENA. PARTI TI ONS
> WHERE TABLE NAME='tp' AND TABLE SCHEMA='test';
Fem e e eeeaaaaas +
| PARTI TI ON_EXPRESSI ON |
dimccccoccccccccccococcooo +
| ¢l + c2 |
oo e e e e moaoooo-- +

1 rowin set (0.09 sec)

SUBPARTI TI ON_EXPRESSI ON: Thisworksin the same fashion for the subpartitioning expres-
sion that defines the subpartitioning for atable as PARTI TI ON_EXPRESSI ON does for the parti-
tioning expression used to define a table's partitioning.

If the table has no subpartitions, then this columnis NULL.

PARTI TI ON_DESCRI PTI ON: This columnis used for RANGE and LIST partitions. For a RANGE
partition, it contains the value set in the partition's VALUES LESS THAN clause, which can be
either an integer or MVAXVALUE. For aL| ST partition, this column contains the values defined in the
partition's VALUES | N clause, which is a comma-separated list of integer values.

For partitions whose PARTI TI ON_METHCD is other than RANGE or LI ST, this column is always
NULL.

TABLE_ROWS: The number of table rows in the partition.

AVG_ROW LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

51



The | NFORVATI ON_SCHEVA PARTI -
TI ONS Table

Thisisthe same as DATA_LENGTH divided by TABLE_ROWS.

DATA LENGTH: Thetotal length of all rows stored in this partition or subpartition, in bytes — that
is, the total number of bytes stored in the partition or subpartition.

MAX_DATA_LENGTH: The maximum number of bytesthat can be stored in this partition or subpar-
tition.

| NDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.
DATA FREE: The number of bytes allocated to the partition or subpartition but not used.
CREATE_TI ME: Thetime of the partition's or subpartition's creation.

UPDATE_TI ME: Thetime that the partition or subpartition was last modified.

CHECK_TI ME: The last time that the table to which this partition or subpartition belongs was
checked.

Note: Some storage engines do not update this time; for tables using these storage engines, this value
isalways NULL.

CHECKSUM The checksum value, if any; otherwise, this columnis NULL.
PARTI TI ON_COMVENT: This column contains the text of any comment made for the partition.
The default value for this column is an empty string.

NODECGROUP: Thisis the nodegroup to which the partition belongs. Thisisrelevant only to MySQL
Cluster tables; otherwise the value of this column is always 0.

TABLESPACE _NAME: This column contains the name of tablespace to which the partition belongs.
In MySQL 5.1, the value of this column is always DEFAULT.

Important: If any partitioned tables created in aMySQL version prior to MySQL 5.1.6 are present
following an upgrade to MySQL 5.1.6 or later, it is not possible to SELECT from, SHOW or DE-
SCRI BE the PARTI T1 ONS table. See Changesin release 5.1.6 (01 February 2006)
[http://dev.mysgl.com/doc/ref man/5.1/en/news-5-1-6.html] before upgrading from MySQL 5.1.5 or
earlier to MySQL 5.1.6 or later.

A non-partitioned table has one record in | NFORMATI ON_SCHENA. PARTI TI ONS; however, the
values of the PARTI TI ON_NAME, SUBPARTI Tl ON_NAME, PARTI -

TI ON_ORDI NAL_PGCSI TI ON, SUBPARTI TI ON_ORDI NAL_PGCSI Tl ON, PARTI -

TI ON_METHOD, SUBPARTI TI ON_METHOCD, PARTI TI ON_EXPRESSI ON, SUBPARTI -

TI ON_EXPRESSI ON, and PARTI TI ON_DESCRI PTI ON columnsareal NULL. (The PARTI -
TI ON_COMVENT column in this case is blank.)

In MySQL 5.1, thereis also only one record in the PARTI TI ONS table for atable using the NDB-
Cl ust er storage engine. The same columns are also NULL (or empty) as for a non-partitioned ta-
ble.

52


http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html

by linear key, 16

by list, 10
I ndeX by range, 7
concepts, 3
A enabling, 3
limitations, 38
ALTERTABLE, 47 optimization, 32, 35
resources, 1
C storage engines (limitations), 38
changing support, 3
table, 47 types, 6
composite partitioning, 17 partitioning information statements, 32
CREATE TABLE, 42 partitioning keys and primary keys, 39
partitioning keys and unique keys, 39
D partitions
dates adding and dropping, 24
used with partitioning, 6 analyzing, 31
used with partitioning (examples), 9, 12, 17, 35 checking, 31
managing, 24
E modifying, 24
optimizing, 31
EXPLAIN PARTITIONS, 32, 32 repairing, 31
EXPLAIN used with partitioned tables, 32 splitting and merging, 24
PARTITIONS
H INFORMATION_SCHEMA table, 50
hash partitioning, 12
hash partitions R
managing, 30 range partitioning, 7
splitting and merging, 30 range partitions
adding and dropping, 24
K managing, 24
key partitioning, 15
key partitions S
managing, 30 subpartitioning, 16
splitting and merging, 30 subpartitions, 16
L T
linear hash partitioning, 14 table
linear key partitioning, 16 changing, 47
list partitioning, 10
list partitions U
adding and dropping, 24 )
managing, 24 unique key_s_ .
and partitioning keys, 39, 39
O
obtaining information about partitions, 32
P
PARTITION, 1

partition management, 24
partition pruning, 35
partitioning, 1

advantages, 4

and dates, 6

by hash, 12

by key, 15

by linear hash, 14

53



	Guide to MySQL 5.1 Partitioning
	Table of Contents
	Chapter 1. Partitioning
	Chapter 2. Overview of Partitioning in MySQL
	Chapter 3. Partition Types
	3.1. RANGE Partitioning
	3.2. LIST Partitioning
	3.3. HASH Partitioning
	3.3.1. LINEAR HASH Partitioning

	3.4. KEY Partitioning
	3.5. Subpartitioning
	3.6. How MySQL Partitioning Handles NULL Values

	Chapter 4. Partition Management
	4.1. Management of RANGE and LIST Partitions
	4.2. Management of HASH and KEY Partitions
	4.3. Maintenance of Partitions
	4.4. Obtaining Information About Partitions

	Chapter 5. Partition Pruning
	Chapter 6. Restrictions and Limitations on Partitioning
	Chapter 7. SQL Statements for Creating and Altering Partitioned Tables
	7.1. Partitioning Extensions to CREATE TABLE
	7.1.1. Using the partition_options Clause
	7.1.2. Using partition_definition Clauses

	7.2. Partitioning Extnesions to the ALTER TABLE Statement

	Chapter 8. The INFORMATION_SCHEMA PARTITIONS Table
	Index

